768 lines
35 KiB
C++
Executable file
768 lines
35 KiB
C++
Executable file
/*
|
|
* Vulkan Example - Compute shader cloth simulation
|
|
*
|
|
* A compute shader updates a shader storage buffer that contains particles held together by springs and also does basic
|
|
* collision detection against a sphere. This storage buffer is then used as the vertex input for the graphics part of the sample
|
|
*
|
|
* Copyright (C) 2016-2025 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include "vulkanexamplebase.h"
|
|
#include "VulkanglTFModel.h"
|
|
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
uint32_t readSet{ 0 };
|
|
uint32_t indexCount{ 0 };
|
|
bool simulateWind{ false };
|
|
// This will be set to true, if the device has a dedicated queue from a compute only queue family
|
|
// With such a queue graphics and compute workloads can run in parallel, but this also requires additional barriers (often called "async compute")
|
|
// These barriers will release and acquire the resources used in graphics and compute between the different queue families
|
|
bool dedicatedComputeQueue{ false };
|
|
|
|
vks::Texture2D textureCloth;
|
|
vkglTF::Model modelSphere;
|
|
|
|
// The cloth is made from a grid of particles
|
|
struct Particle {
|
|
glm::vec4 pos;
|
|
glm::vec4 vel;
|
|
glm::vec4 uv;
|
|
glm::vec4 normal;
|
|
};
|
|
|
|
// Cloth definition parameters
|
|
struct Cloth {
|
|
glm::uvec2 gridsize{ 60, 60 };
|
|
glm::vec2 size{ 5.0f, 5.0f };
|
|
} cloth;
|
|
|
|
// We put the resource "types" into structs to make this sample easier to understand
|
|
|
|
// We use two buffers for our cloth simulation: One with the input cloth data and one for outputting updated values
|
|
// The compute pipeline will update the output buffer, and the graphics pipeline will it as a vertex buffer
|
|
struct StorageBuffers {
|
|
vks::Buffer input;
|
|
vks::Buffer output;
|
|
} storageBuffers;
|
|
|
|
// Resources for the graphics part of the example
|
|
struct Graphics {
|
|
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
|
|
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
|
|
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
|
|
struct Pipelines {
|
|
VkPipeline cloth{ VK_NULL_HANDLE };
|
|
VkPipeline sphere{ VK_NULL_HANDLE };
|
|
} pipelines;
|
|
// The vertices will be stored in the shader storage buffers, so we only need an index buffer in this structure
|
|
vks::Buffer indices;
|
|
struct UniformData {
|
|
glm::mat4 projection;
|
|
glm::mat4 view;
|
|
glm::vec4 lightPos{ -2.0f, 4.0f, -2.0f, 1.0f };
|
|
} uniformData;
|
|
vks::Buffer uniformBuffer;
|
|
} graphics;
|
|
|
|
// Resources for the compute part of the example
|
|
// Number of compute command buffers: set to 1 for serialized processing or 2 for in-parallel with graphics queue
|
|
static constexpr size_t computeCommandBufferCount = 2 ;
|
|
struct Compute {
|
|
typedef struct Semaphores_t {
|
|
VkSemaphore ready{ VK_NULL_HANDLE };
|
|
VkSemaphore complete{ VK_NULL_HANDLE };
|
|
} semaphores_t;
|
|
std::array<semaphores_t, computeCommandBufferCount> semaphores{};
|
|
VkQueue queue{ VK_NULL_HANDLE };
|
|
VkCommandPool commandPool{ VK_NULL_HANDLE };
|
|
std::array<VkCommandBuffer, computeCommandBufferCount> commandBuffers{};
|
|
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
|
|
std::array<VkDescriptorSet, 2> descriptorSets{ VK_NULL_HANDLE };
|
|
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
|
|
VkPipeline pipeline{ VK_NULL_HANDLE };
|
|
struct UniformData {
|
|
float deltaT{ 0.0f };
|
|
// These arguments define the spring setup for the cloth piece
|
|
// Changing these changes how the cloth reacts
|
|
float particleMass{ 0.1f };
|
|
float springStiffness{ 2000.0f };
|
|
float damping{ 0.25f };
|
|
float restDistH{ 0 };
|
|
float restDistV{ 0 };
|
|
float restDistD{ 0 };
|
|
float sphereRadius{ 1.0f };
|
|
glm::vec4 spherePos{ 0.0f, 0.0f, 0.0f, 0.0f };
|
|
glm::vec4 gravity{ 0.0f, 9.8f, 0.0f, 0.0f };
|
|
glm::ivec2 particleCount{ 0 };
|
|
} uniformData;
|
|
vks::Buffer uniformBuffer;
|
|
} compute;
|
|
|
|
VulkanExample() : VulkanExampleBase()
|
|
{
|
|
title = "Compute shader cloth simulation";
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
|
camera.setRotation(glm::vec3(-30.0f, -45.0f, 0.0f));
|
|
camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f));
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
if (device) {
|
|
// Graphics
|
|
graphics.indices.destroy();
|
|
graphics.uniformBuffer.destroy();
|
|
vkDestroyPipeline(device, graphics.pipelines.cloth, nullptr);
|
|
vkDestroyPipeline(device, graphics.pipelines.sphere, nullptr);
|
|
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
|
|
textureCloth.destroy();
|
|
|
|
// Compute
|
|
compute.uniformBuffer.destroy();
|
|
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
|
|
vkDestroyPipeline(device, compute.pipeline, nullptr);
|
|
for (uint32_t i = 0; i < compute.semaphores.size(); i++) {
|
|
vkDestroySemaphore(device, compute.semaphores[i].ready, nullptr);
|
|
vkDestroySemaphore(device, compute.semaphores[i].complete, nullptr);
|
|
}
|
|
vkDestroyCommandPool(device, compute.commandPool, nullptr);
|
|
|
|
// SSBOs
|
|
storageBuffers.input.destroy();
|
|
storageBuffers.output.destroy();
|
|
}
|
|
}
|
|
|
|
// Enable physical device features required for this example
|
|
virtual void getEnabledFeatures()
|
|
{
|
|
if (deviceFeatures.samplerAnisotropy) {
|
|
enabledFeatures.samplerAnisotropy = VK_TRUE;
|
|
}
|
|
};
|
|
|
|
void loadAssets()
|
|
{
|
|
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
|
|
modelSphere.loadFromFile(getAssetPath() + "models/sphere.gltf", vulkanDevice, queue, glTFLoadingFlags);
|
|
textureCloth.loadFromFile(getAssetPath() + "textures/vulkan_cloth_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
|
}
|
|
|
|
void addGraphicsToComputeBarriers(VkCommandBuffer commandBuffer, VkAccessFlags srcAccessMask, VkAccessFlags dstAccessMask, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask)
|
|
{
|
|
if (dedicatedComputeQueue) {
|
|
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
|
|
bufferBarrier.srcAccessMask = srcAccessMask;
|
|
bufferBarrier.dstAccessMask = dstAccessMask;
|
|
bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
bufferBarrier.size = VK_WHOLE_SIZE;
|
|
|
|
std::vector<VkBufferMemoryBarrier> bufferBarriers;
|
|
bufferBarrier.buffer = storageBuffers.input.buffer;
|
|
bufferBarriers.push_back(bufferBarrier);
|
|
bufferBarrier.buffer = storageBuffers.output.buffer;
|
|
bufferBarriers.push_back(bufferBarrier);
|
|
vkCmdPipelineBarrier(commandBuffer,
|
|
srcStageMask,
|
|
dstStageMask,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
static_cast<uint32_t>(bufferBarriers.size()), bufferBarriers.data(),
|
|
0, nullptr);
|
|
}
|
|
}
|
|
|
|
void addComputeToComputeBarriers(VkCommandBuffer commandBuffer, uint32_t readSet)
|
|
{
|
|
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
|
|
bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
bufferBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
bufferBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
bufferBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
bufferBarrier.size = VK_WHOLE_SIZE;
|
|
std::vector<VkBufferMemoryBarrier> bufferBarriers;
|
|
if (readSet == 0)
|
|
{
|
|
// SRS - we have written to output.buffer and need a memory barrier before reading it
|
|
// - don't need a memory barrier for input.buffer, the execution barrier is enough
|
|
bufferBarrier.buffer = storageBuffers.output.buffer;
|
|
bufferBarriers.push_back(bufferBarrier);
|
|
}
|
|
else //if (readSet == 1)
|
|
{
|
|
// SRS - we have written to input.buffer and need a memory barrier before reading it
|
|
// - don't need a memory barrier for output.buffer, the execution barrier is enough
|
|
bufferBarrier.buffer = storageBuffers.input.buffer;
|
|
bufferBarriers.push_back(bufferBarrier);
|
|
}
|
|
vkCmdPipelineBarrier(
|
|
commandBuffer,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
static_cast<uint32_t>(bufferBarriers.size()), bufferBarriers.data(),
|
|
0, nullptr);
|
|
}
|
|
|
|
void addComputeToGraphicsBarriers(VkCommandBuffer commandBuffer, VkAccessFlags srcAccessMask, VkAccessFlags dstAccessMask, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask)
|
|
{
|
|
if (dedicatedComputeQueue) {
|
|
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
|
|
bufferBarrier.srcAccessMask = srcAccessMask;
|
|
bufferBarrier.dstAccessMask = dstAccessMask;
|
|
bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
|
|
bufferBarrier.size = VK_WHOLE_SIZE;
|
|
std::vector<VkBufferMemoryBarrier> bufferBarriers;
|
|
bufferBarrier.buffer = storageBuffers.input.buffer;
|
|
bufferBarriers.push_back(bufferBarrier);
|
|
bufferBarrier.buffer = storageBuffers.output.buffer;
|
|
bufferBarriers.push_back(bufferBarrier);
|
|
vkCmdPipelineBarrier(
|
|
commandBuffer,
|
|
srcStageMask,
|
|
dstStageMask,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
static_cast<uint32_t>(bufferBarriers.size()), bufferBarriers.data(),
|
|
0, nullptr);
|
|
}
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
// Acquire storage buffers from compute queue
|
|
addComputeToGraphicsBarriers(drawCmdBuffers[i], 0, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT);
|
|
|
|
// Draw the particle system using the update vertex buffer
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
|
|
// Render sphere
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.sphere);
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
|
|
modelSphere.draw(drawCmdBuffers[i]);
|
|
|
|
// Render cloth
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.cloth);
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
|
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], graphics.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &storageBuffers.output.buffer, offsets);
|
|
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
// release the storage buffers to the compute queue
|
|
addGraphicsToComputeBarriers(drawCmdBuffers[i], VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, 0, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
|
|
}
|
|
|
|
void buildComputeCommandBuffer()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
cmdBufInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
|
|
|
|
for (uint32_t i = 0; i < compute.commandBuffers.size(); i++) {
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffers[i], &cmdBufInfo));
|
|
|
|
// Acquire the storage buffers from the graphics queue
|
|
addGraphicsToComputeBarriers(compute.commandBuffers[i], 0, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
|
|
|
|
vkCmdBindPipeline(compute.commandBuffers[i], VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
|
|
|
|
uint32_t calculateNormals = 0;
|
|
vkCmdPushConstants(compute.commandBuffers[i], compute.pipelineLayout, VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(uint32_t), &calculateNormals);
|
|
|
|
// Dispatch the compute job
|
|
// SRS - Iterations **must** be an even number, so that readSet starts at 1 and the final result ends up in output.buffer with readSet equal to 0
|
|
const uint32_t iterations = 64;
|
|
for (uint32_t j = 0; j < iterations; j++) {
|
|
readSet = 1 - readSet;
|
|
vkCmdBindDescriptorSets(compute.commandBuffers[i], VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSets[readSet], 0, 0);
|
|
|
|
if (j == iterations - 1) {
|
|
calculateNormals = 1;
|
|
vkCmdPushConstants(compute.commandBuffers[i], compute.pipelineLayout, VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(uint32_t), &calculateNormals);
|
|
}
|
|
|
|
vkCmdDispatch(compute.commandBuffers[i], cloth.gridsize.x / 10, cloth.gridsize.y / 10, 1);
|
|
|
|
// Don't add a barrier on the last iteration of the loop, since we'll have an explicit release to the graphics queue
|
|
if (j != iterations - 1) {
|
|
addComputeToComputeBarriers(compute.commandBuffers[i], readSet);
|
|
}
|
|
|
|
}
|
|
|
|
// release the storage buffers back to the graphics queue
|
|
addComputeToGraphicsBarriers(compute.commandBuffers[i], VK_ACCESS_SHADER_WRITE_BIT, 0, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
|
|
vkEndCommandBuffer(compute.commandBuffers[i]);
|
|
}
|
|
}
|
|
|
|
// Setup and fill the shader storage buffers containing the particles
|
|
// These buffers are used as shader storage buffers in the compute shader (to update them) and as vertex input in the vertex shader (to display them)
|
|
void prepareStorageBuffers()
|
|
{
|
|
std::vector<Particle> particleBuffer(cloth.gridsize.x * cloth.gridsize.y);
|
|
|
|
float dx = cloth.size.x / (cloth.gridsize.x - 1);
|
|
float dy = cloth.size.y / (cloth.gridsize.y - 1);
|
|
float du = 1.0f / (cloth.gridsize.x - 1);
|
|
float dv = 1.0f / (cloth.gridsize.y - 1);
|
|
|
|
// Set up a flat cloth that falls onto sphere
|
|
glm::mat4 transM = glm::translate(glm::mat4(1.0f), glm::vec3(-cloth.size.x / 2.0f, -2.0f, -cloth.size.y / 2.0f));
|
|
for (uint32_t i = 0; i < cloth.gridsize.y; i++) {
|
|
for (uint32_t j = 0; j < cloth.gridsize.x; j++) {
|
|
particleBuffer[i + j * cloth.gridsize.y].pos = transM * glm::vec4(dx * j, 0.0f, dy * i, 1.0f);
|
|
particleBuffer[i + j * cloth.gridsize.y].vel = glm::vec4(0.0f);
|
|
particleBuffer[i + j * cloth.gridsize.y].uv = glm::vec4(1.0f - du * i, dv * j, 0.0f, 0.0f);
|
|
}
|
|
}
|
|
|
|
VkDeviceSize storageBufferSize = particleBuffer.size() * sizeof(Particle);
|
|
|
|
// Staging
|
|
// SSBO won't be changed on the host after upload so copy to device local memory
|
|
|
|
vks::Buffer stagingBuffer;
|
|
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&stagingBuffer,
|
|
storageBufferSize,
|
|
particleBuffer.data());
|
|
|
|
// SSBOs will be used both as storage buffers (compute) and vertex buffers (graphics)
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
&storageBuffers.input,
|
|
storageBufferSize);
|
|
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
&storageBuffers.output,
|
|
storageBufferSize);
|
|
|
|
// Copy from staging buffer
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
VkBufferCopy copyRegion = {};
|
|
copyRegion.size = storageBufferSize;
|
|
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, storageBuffers.output.buffer, 1, ©Region);
|
|
// Add an initial release barrier to the graphics queue,
|
|
// so that when the compute command buffer executes for the first time
|
|
// it doesn't complain about a lack of a corresponding "release" to its "acquire"
|
|
addGraphicsToComputeBarriers(copyCmd, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, 0, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
|
|
|
stagingBuffer.destroy();
|
|
|
|
// Indices
|
|
std::vector<uint32_t> indices;
|
|
for (uint32_t y = 0; y < cloth.gridsize.y - 1; y++) {
|
|
for (uint32_t x = 0; x < cloth.gridsize.x; x++) {
|
|
indices.push_back((y + 1) * cloth.gridsize.x + x);
|
|
indices.push_back((y)*cloth.gridsize.x + x);
|
|
}
|
|
// Primitive restart (signaled by special value 0xFFFFFFFF)
|
|
indices.push_back(0xFFFFFFFF);
|
|
}
|
|
uint32_t indexBufferSize = static_cast<uint32_t>(indices.size()) * sizeof(uint32_t);
|
|
indexCount = static_cast<uint32_t>(indices.size());
|
|
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&stagingBuffer,
|
|
indexBufferSize,
|
|
indices.data());
|
|
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
&graphics.indices,
|
|
indexBufferSize);
|
|
|
|
// Copy from staging buffer
|
|
copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
copyRegion = {};
|
|
copyRegion.size = indexBufferSize;
|
|
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, graphics.indices.buffer, 1, ©Region);
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
|
|
|
stagingBuffer.destroy();
|
|
}
|
|
|
|
// Prepare the resources used for the graphics part of the sample
|
|
void prepareGraphics()
|
|
{
|
|
// Uniform buffer for passing data to the vertex shader
|
|
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &graphics.uniformBuffer, sizeof(Graphics::UniformData));
|
|
VK_CHECK_RESULT(graphics.uniformBuffer.map());
|
|
|
|
// Descriptor pool
|
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 4),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
|
|
};
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
|
|
// Descriptor layout
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
|
|
|
|
// Decscriptor set
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
|
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &graphics.uniformBuffer.descriptor),
|
|
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureCloth.descriptor)
|
|
};
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
|
|
|
// Layout
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
|
|
|
|
// Pipeline
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 0, VK_TRUE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
|
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
|
|
|
// Rendering pipeline
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
|
|
loadShader(getShadersPath() + "computecloth/cloth.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
|
|
loadShader(getShadersPath() + "computecloth/cloth.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
|
|
};
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(graphics.pipelineLayout, renderPass);
|
|
|
|
// Vertex Input
|
|
std::vector<VkVertexInputBindingDescription> inputBindings = {
|
|
vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX)
|
|
};
|
|
// Attribute descriptions based on the particles of the cloth
|
|
std::vector<VkVertexInputAttributeDescription> inputAttributes = {
|
|
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Particle, pos)),
|
|
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Particle, uv)),
|
|
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Particle, normal))
|
|
};
|
|
|
|
// Assign to vertex buffer
|
|
VkPipelineVertexInputStateCreateInfo inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(inputBindings.size());
|
|
inputState.pVertexBindingDescriptions = inputBindings.data();
|
|
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(inputAttributes.size());
|
|
inputState.pVertexAttributeDescriptions = inputAttributes.data();
|
|
|
|
pipelineCreateInfo.pVertexInputState = &inputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
pipelineCreateInfo.renderPass = renderPass;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipelines.cloth));
|
|
|
|
// Sphere rendering pipeline
|
|
pipelineCreateInfo.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Normal });
|
|
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(inputAttributes.size());
|
|
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
|
inputAssemblyState.primitiveRestartEnable = VK_FALSE;
|
|
rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
|
|
shaderStages = {
|
|
loadShader(getShadersPath() + "computecloth/sphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
|
|
loadShader(getShadersPath() + "computecloth/sphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
|
|
};
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipelines.sphere));
|
|
|
|
buildCommandBuffers();
|
|
}
|
|
|
|
// Prepare the resources used for the compute part of the sample
|
|
void prepareCompute()
|
|
{
|
|
// Create a compute capable device queue
|
|
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
|
|
|
|
// Uniform buffer for passing data to the compute shader
|
|
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(Compute::UniformData));
|
|
VK_CHECK_RESULT(compute.uniformBuffer.map());
|
|
|
|
// Set some initial values
|
|
float dx = cloth.size.x / (cloth.gridsize.x - 1);
|
|
float dy = cloth.size.y / (cloth.gridsize.y - 1);
|
|
|
|
compute.uniformData.restDistH = dx;
|
|
compute.uniformData.restDistV = dy;
|
|
compute.uniformData.restDistD = sqrtf(dx * dx + dy * dy);
|
|
compute.uniformData.particleCount = cloth.gridsize;
|
|
|
|
// Create compute pipeline
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 0),
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1),
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 2),
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1);
|
|
|
|
// Push constants used to pass some parameters
|
|
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_COMPUTE_BIT, sizeof(uint32_t), 0);
|
|
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
|
|
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
|
|
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1);
|
|
|
|
// Create two descriptor sets with input and output buffers switched
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSets[0]));
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSets[1]));
|
|
|
|
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets = {
|
|
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &storageBuffers.input.descriptor),
|
|
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &storageBuffers.output.descriptor),
|
|
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &compute.uniformBuffer.descriptor),
|
|
|
|
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &storageBuffers.output.descriptor),
|
|
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &storageBuffers.input.descriptor),
|
|
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &compute.uniformBuffer.descriptor)
|
|
};
|
|
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, NULL);
|
|
|
|
// Create pipeline
|
|
VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
|
|
computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computecloth/cloth.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
|
|
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline));
|
|
|
|
// Separate command pool as queue family for compute may be different than graphics
|
|
VkCommandPoolCreateInfo cmdPoolInfo = {};
|
|
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
|
cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
|
|
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
|
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
|
|
|
|
// Create a command buffer for compute operations
|
|
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, static_cast<uint32_t>(compute.commandBuffers.size()));
|
|
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffers[0]));
|
|
|
|
// Semaphores for graphics / compute synchronization
|
|
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
|
|
for (uint32_t i = 0; i < compute.semaphores.size(); i++) {
|
|
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphores[i].ready));
|
|
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphores[i].complete));
|
|
}
|
|
|
|
// Build a single command buffer containing the compute dispatch commands
|
|
buildComputeCommandBuffer();
|
|
}
|
|
|
|
void updateComputeUBO()
|
|
{
|
|
if (!paused) {
|
|
// SRS - Clamp frameTimer to max 20ms refresh period (e.g. if blocked on resize), otherwise image breakup can occur
|
|
compute.uniformData.deltaT = fmin(frameTimer, 0.02f) * 0.0025f;
|
|
|
|
if (simulateWind) {
|
|
std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
|
|
std::uniform_real_distribution<float> rd(1.0f, 12.0f);
|
|
compute.uniformData.gravity.x = cos(glm::radians(-timer * 360.0f)) * (rd(rndEngine) - rd(rndEngine));
|
|
compute.uniformData.gravity.z = sin(glm::radians(timer * 360.0f)) * (rd(rndEngine) - rd(rndEngine));
|
|
}
|
|
else {
|
|
compute.uniformData.gravity.x = 0.0f;
|
|
compute.uniformData.gravity.z = 0.0f;
|
|
}
|
|
}
|
|
else {
|
|
compute.uniformData.deltaT = 0.0f;
|
|
}
|
|
memcpy(compute.uniformBuffer.mapped, &compute.uniformData, sizeof(Compute::UniformData));
|
|
}
|
|
|
|
void updateGraphicsUBO()
|
|
{
|
|
graphics.uniformData.projection = camera.matrices.perspective;
|
|
graphics.uniformData.view = camera.matrices.view;
|
|
memcpy(graphics.uniformBuffer.mapped, &graphics.uniformData, sizeof(Graphics::UniformData));
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
// As we use both graphics and compute, frame submission is a bit more involved
|
|
// We'll be using semaphores to synchronize between the compute shader updating the cloth and the graphics pipeline drawing it
|
|
|
|
static bool firstDraw = true;
|
|
static uint32_t computeSubmitIndex{ 0 }, graphicsSubmitIndex{ 0 };
|
|
if (computeCommandBufferCount > 1)
|
|
{
|
|
// SRS - if we are double buffering the compute queue, swap the compute command buffer indices
|
|
graphicsSubmitIndex = computeSubmitIndex;
|
|
computeSubmitIndex = 1 - graphicsSubmitIndex;
|
|
}
|
|
|
|
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
|
|
VkPipelineStageFlags computeWaitDstStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
|
|
if (!firstDraw) {
|
|
computeSubmitInfo.waitSemaphoreCount = 1;
|
|
computeSubmitInfo.pWaitSemaphores = &compute.semaphores[computeSubmitIndex].ready;
|
|
computeSubmitInfo.pWaitDstStageMask = &computeWaitDstStageMask;
|
|
}
|
|
else {
|
|
firstDraw = false;
|
|
if (computeCommandBufferCount > 1)
|
|
{
|
|
// SRS - if we are double buffering the compute queue, submit extra command buffer at start
|
|
computeSubmitInfo.signalSemaphoreCount = 1;
|
|
computeSubmitInfo.pSignalSemaphores = &compute.semaphores[graphicsSubmitIndex].complete;
|
|
computeSubmitInfo.commandBufferCount = 1;
|
|
computeSubmitInfo.pCommandBuffers = &compute.commandBuffers[graphicsSubmitIndex];
|
|
|
|
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE));
|
|
|
|
// Add an extra set of acquire and release barriers to the graphics queue,
|
|
// so that when the second compute command buffer executes for the first time
|
|
// it doesn't complain about a lack of a corresponding "acquire" to its "release" and vice versa
|
|
VkCommandBuffer barrierCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
addComputeToGraphicsBarriers(barrierCmd, 0, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT);
|
|
addGraphicsToComputeBarriers(barrierCmd, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, 0, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
|
|
vulkanDevice->flushCommandBuffer(barrierCmd, queue, true);
|
|
}
|
|
}
|
|
computeSubmitInfo.signalSemaphoreCount = 1;
|
|
computeSubmitInfo.pSignalSemaphores = &compute.semaphores[computeSubmitIndex].complete;
|
|
computeSubmitInfo.commandBufferCount = 1;
|
|
computeSubmitInfo.pCommandBuffers = &compute.commandBuffers[computeSubmitIndex];
|
|
|
|
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE));
|
|
|
|
// Submit graphics commands
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
VkPipelineStageFlags waitDstStageMask[2] = {
|
|
submitPipelineStages, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT
|
|
};
|
|
VkSemaphore waitSemaphores[2] = {
|
|
semaphores.presentComplete, compute.semaphores[graphicsSubmitIndex].complete
|
|
};
|
|
VkSemaphore signalSemaphores[2] = {
|
|
semaphores.renderComplete, compute.semaphores[graphicsSubmitIndex].ready
|
|
};
|
|
|
|
submitInfo.waitSemaphoreCount = 2;
|
|
submitInfo.pWaitDstStageMask = waitDstStageMask;
|
|
submitInfo.pWaitSemaphores = waitSemaphores;
|
|
submitInfo.signalSemaphoreCount = 2;
|
|
submitInfo.pSignalSemaphores = signalSemaphores;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
// Make sure the code works properly both with different queues families for graphics and compute and the same queue family
|
|
// You can use DEBUG_FORCE_SHARED_GRAPHICS_COMPUTE_QUEUE preprocessor define to force graphics and compute from the same queue family
|
|
#ifdef DEBUG_FORCE_SHARED_GRAPHICS_COMPUTE_QUEUE
|
|
vulkanDevice->queueFamilyIndices.compute = vulkanDevice->queueFamilyIndices.graphics;
|
|
#endif
|
|
// Check whether the compute queue family is distinct from the graphics queue family
|
|
dedicatedComputeQueue = vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute;
|
|
loadAssets();
|
|
prepareStorageBuffers();
|
|
prepareGraphics();
|
|
prepareCompute();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
updateGraphicsUBO();
|
|
updateComputeUBO();
|
|
draw();
|
|
}
|
|
|
|
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay)
|
|
{
|
|
if (overlay->header("Settings")) {
|
|
overlay->checkBox("Simulate wind", &simulateWind);
|
|
}
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|