procedural-3d-engine/examples/instancing/instancing.cpp
Ben Clayton ca884587a4 Move shaders into glsl and hlsl directories
Move `data/shaders` to `data/shaders/glsl`
Move `data/hlsl` to `data/shaders/hlsl`

Fix up shader paths in the cpp files to point to the new glsl location.

`data/shaders/hlsl/compile.py` still overwrites the glsl .spv files (for
now).

Issue: #723
2020-06-01 12:22:28 +01:00

614 lines
No EOL
22 KiB
C++

/*
* Vulkan Example - Instanced mesh rendering, uses a separate vertex buffer for instanced data
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <time.h>
#include <vector>
#include <random>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanBuffer.hpp"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define INSTANCE_BUFFER_BIND_ID 1
#define ENABLE_VALIDATION false
#if defined(__ANDROID__)
#define INSTANCE_COUNT 4096
#else
#define INSTANCE_COUNT 8192
#endif
class VulkanExample : public VulkanExampleBase
{
public:
struct {
vks::Texture2DArray rocks;
vks::Texture2D planet;
} textures;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_COLOR,
});
struct {
vks::Model rock;
vks::Model planet;
} models;
// Per-instance data block
struct InstanceData {
glm::vec3 pos;
glm::vec3 rot;
float scale;
uint32_t texIndex;
};
// Contains the instanced data
struct InstanceBuffer {
VkBuffer buffer = VK_NULL_HANDLE;
VkDeviceMemory memory = VK_NULL_HANDLE;
size_t size = 0;
VkDescriptorBufferInfo descriptor;
} instanceBuffer;
struct UBOVS {
glm::mat4 projection;
glm::mat4 view;
glm::vec4 lightPos = glm::vec4(0.0f, -5.0f, 0.0f, 1.0f);
float locSpeed = 0.0f;
float globSpeed = 0.0f;
} uboVS;
struct {
vks::Buffer scene;
} uniformBuffers;
VkPipelineLayout pipelineLayout;
struct {
VkPipeline instancedRocks;
VkPipeline planet;
VkPipeline starfield;
} pipelines;
VkDescriptorSetLayout descriptorSetLayout;
struct {
VkDescriptorSet instancedRocks;
VkDescriptorSet planet;
} descriptorSets;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Instanced mesh rendering";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(5.5f, -1.85f, -18.5f));
camera.setRotation(glm::vec3(-17.2f, -4.7f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f);
settings.overlay = true;
}
~VulkanExample()
{
vkDestroyPipeline(device, pipelines.instancedRocks, nullptr);
vkDestroyPipeline(device, pipelines.planet, nullptr);
vkDestroyPipeline(device, pipelines.starfield, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyBuffer(device, instanceBuffer.buffer, nullptr);
vkFreeMemory(device, instanceBuffer.memory, nullptr);
models.rock.destroy();
models.planet.destroy();
textures.rocks.destroy();
textures.planet.destroy();
uniformBuffers.scene.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
// Enable texture compression
if (deviceFeatures.textureCompressionBC) {
enabledFeatures.textureCompressionBC = VK_TRUE;
}
else if (deviceFeatures.textureCompressionASTC_LDR) {
enabledFeatures.textureCompressionASTC_LDR = VK_TRUE;
}
else if (deviceFeatures.textureCompressionETC2) {
enabledFeatures.textureCompressionETC2 = VK_TRUE;
}
};
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Star field
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.planet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.starfield);
vkCmdDraw(drawCmdBuffers[i], 4, 1, 0, 0);
// Planet
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.planet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.planet);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.planet.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.planet.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], models.planet.indexCount, 1, 0, 0, 0);
// Instanced rocks
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.instancedRocks, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.instancedRocks);
// Binding point 0 : Mesh vertex buffer
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.rock.vertices.buffer, offsets);
// Binding point 1 : Instance data buffer
vkCmdBindVertexBuffers(drawCmdBuffers[i], INSTANCE_BUFFER_BIND_ID, 1, &instanceBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.rock.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
// Render instances
vkCmdDrawIndexed(drawCmdBuffers[i], models.rock.indexCount, INSTANCE_COUNT, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
models.rock.loadFromFile(getAssetPath() + "models/rock01.dae", vertexLayout, 0.1f, vulkanDevice, queue);
models.planet.loadFromFile(getAssetPath() + "models/sphere.obj", vertexLayout, 0.2f, vulkanDevice, queue);
// Textures
std::string texFormatSuffix;
VkFormat texFormat;
// Get supported compressed texture format
if (vulkanDevice->features.textureCompressionBC) {
texFormatSuffix = "_bc3_unorm";
texFormat = VK_FORMAT_BC3_UNORM_BLOCK;
}
else if (vulkanDevice->features.textureCompressionASTC_LDR) {
texFormatSuffix = "_astc_8x8_unorm";
texFormat = VK_FORMAT_ASTC_8x8_UNORM_BLOCK;
}
else if (vulkanDevice->features.textureCompressionETC2) {
texFormatSuffix = "_etc2_unorm";
texFormat = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
}
else {
vks::tools::exitFatal("Device does not support any compressed texture format!", VK_ERROR_FEATURE_NOT_PRESENT);
}
textures.rocks.loadFromFile(getAssetPath() + "textures/texturearray_rocks" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
textures.planet.loadFromFile(getAssetPath() + "textures/lavaplanet" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
}
void setupDescriptorPool()
{
// Example uses one ubo
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader combined sampler
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo descripotrSetAllocInfo;
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
descripotrSetAllocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);;
// Instanced rocks
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descripotrSetAllocInfo, &descriptorSets.instancedRocks));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.instancedRocks, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor), // Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.instancedRocks, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.rocks.descriptor) // Binding 1 : Color map
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Planet
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descripotrSetAllocInfo, &descriptorSets.planet));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.planet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor), // Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.planet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.planet.descriptor) // Binding 1 : Color map
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
// This example uses two different input states, one for the instanced part and one for non-instanced rendering
VkPipelineVertexInputStateCreateInfo inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
// Vertex input bindings
// The instancing pipeline uses a vertex input state with two bindings
bindingDescriptions = {
// Binding point 0: Mesh vertex layout description at per-vertex rate
vks::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX),
// Binding point 1: Instanced data at per-instance rate
vks::initializers::vertexInputBindingDescription(INSTANCE_BUFFER_BIND_ID, sizeof(InstanceData), VK_VERTEX_INPUT_RATE_INSTANCE)
};
// Vertex attribute bindings
// Note that the shader declaration for per-vertex and per-instance attributes is the same, the different input rates are only stored in the bindings:
// instanced.vert:
// layout (location = 0) in vec3 inPos; Per-Vertex
// ...
// layout (location = 4) in vec3 instancePos; Per-Instance
attributeDescriptions = {
// Per-vertex attributees
// These are advanced for each vertex fetched by the vertex shader
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 2: Texture coordinates
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Color
// Per-Instance attributes
// These are fetched for each instance rendered
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 4: Position
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 5, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 5: Rotation
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 6, VK_FORMAT_R32_SFLOAT,sizeof(float) * 6), // Location 6: Scale
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 7, VK_FORMAT_R32_SINT, sizeof(float) * 7), // Location 7: Texture array layer index
};
inputState.pVertexBindingDescriptions = bindingDescriptions.data();
inputState.pVertexAttributeDescriptions = attributeDescriptions.data();
pipelineCreateInfo.pVertexInputState = &inputState;
// Instancing pipeline
shaderStages[0] = loadShader(getShadersPath() + "instancing/instancing.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "instancing/instancing.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Use all input bindings and attribute descriptions
inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(bindingDescriptions.size());
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.instancedRocks));
// Planet rendering pipeline
shaderStages[0] = loadShader(getShadersPath() + "instancing/planet.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "instancing/planet.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Only use the non-instanced input bindings and attribute descriptions
inputState.vertexBindingDescriptionCount = 1;
inputState.vertexAttributeDescriptionCount = 4;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.planet));
// Star field pipeline
rasterizationState.cullMode = VK_CULL_MODE_NONE;
depthStencilState.depthWriteEnable = VK_FALSE;
shaderStages[0] = loadShader(getShadersPath() + "instancing/starfield.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "instancing/starfield.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Vertices are generated in the vertex shader
inputState.vertexBindingDescriptionCount = 0;
inputState.vertexAttributeDescriptionCount = 0;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.starfield));
}
void prepareInstanceData()
{
std::vector<InstanceData> instanceData;
instanceData.resize(INSTANCE_COUNT);
std::default_random_engine rndGenerator(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> uniformDist(0.0, 1.0);
std::uniform_int_distribution<uint32_t> rndTextureIndex(0, textures.rocks.layerCount);
// Distribute rocks randomly on two different rings
for (auto i = 0; i < INSTANCE_COUNT / 2; i++) {
glm::vec2 ring0 { 7.0f, 11.0f };
glm::vec2 ring1 { 14.0f, 18.0f };
float rho, theta;
// Inner ring
rho = sqrt((pow(ring0[1], 2.0f) - pow(ring0[0], 2.0f)) * uniformDist(rndGenerator) + pow(ring0[0], 2.0f));
theta = 2.0 * M_PI * uniformDist(rndGenerator);
instanceData[i].pos = glm::vec3(rho*cos(theta), uniformDist(rndGenerator) * 0.5f - 0.25f, rho*sin(theta));
instanceData[i].rot = glm::vec3(M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator));
instanceData[i].scale = 1.5f + uniformDist(rndGenerator) - uniformDist(rndGenerator);
instanceData[i].texIndex = rndTextureIndex(rndGenerator);
instanceData[i].scale *= 0.75f;
// Outer ring
rho = sqrt((pow(ring1[1], 2.0f) - pow(ring1[0], 2.0f)) * uniformDist(rndGenerator) + pow(ring1[0], 2.0f));
theta = 2.0 * M_PI * uniformDist(rndGenerator);
instanceData[i + INSTANCE_COUNT / 2].pos = glm::vec3(rho*cos(theta), uniformDist(rndGenerator) * 0.5f - 0.25f, rho*sin(theta));
instanceData[i + INSTANCE_COUNT / 2].rot = glm::vec3(M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator));
instanceData[i + INSTANCE_COUNT / 2].scale = 1.5f + uniformDist(rndGenerator) - uniformDist(rndGenerator);
instanceData[i + INSTANCE_COUNT / 2].texIndex = rndTextureIndex(rndGenerator);
instanceData[i + INSTANCE_COUNT / 2].scale *= 0.75f;
}
instanceBuffer.size = instanceData.size() * sizeof(InstanceData);
// Staging
// Instanced data is static, copy to device local memory
// This results in better performance
struct {
VkDeviceMemory memory;
VkBuffer buffer;
} stagingBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
instanceBuffer.size,
&stagingBuffer.buffer,
&stagingBuffer.memory,
instanceData.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
instanceBuffer.size,
&instanceBuffer.buffer,
&instanceBuffer.memory));
// Copy to staging buffer
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = { };
copyRegion.size = instanceBuffer.size;
vkCmdCopyBuffer(
copyCmd,
stagingBuffer.buffer,
instanceBuffer.buffer,
1,
&copyRegion);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
instanceBuffer.descriptor.range = instanceBuffer.size;
instanceBuffer.descriptor.buffer = instanceBuffer.buffer;
instanceBuffer.descriptor.offset = 0;
// Destroy staging resources
vkDestroyBuffer(device, stagingBuffer.buffer, nullptr);
vkFreeMemory(device, stagingBuffer.memory, nullptr);
}
void prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.scene,
sizeof(uboVS)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.scene.map());
updateUniformBuffer(true);
}
void updateUniformBuffer(bool viewChanged)
{
if (viewChanged)
{
uboVS.projection = camera.matrices.perspective;
uboVS.view = camera.matrices.view;
}
if (!paused)
{
uboVS.locSpeed += frameTimer * 0.35f;
uboVS.globSpeed += frameTimer * 0.01f;
}
memcpy(uniformBuffers.scene.mapped, &uboVS, sizeof(uboVS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareInstanceData();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
{
return;
}
draw();
if (!paused)
{
updateUniformBuffer(false);
}
}
virtual void viewChanged()
{
updateUniformBuffer(true);
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Statistics")) {
overlay->text("Instances: %d", INSTANCE_COUNT);
}
}
};
VULKAN_EXAMPLE_MAIN()