procedural-3d-engine/examples/debugmarker/debugmarker.cpp
Sascha Willems 707bb41851 Minor code cleanup
Removed unused variables
2022-12-09 07:24:32 +01:00

801 lines
35 KiB
C++

/*
* Vulkan Example - Example for VK_EXT_debug_marker extension. To be used in conjunction with a debugging app like RenderDoc (https://renderdoc.org)
*
* Copyright (C) by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
/*
* Note: This sample is deprecated!
* An updated version using VK_EXT_debug_utils along with an in-depth tutorial is available in the official Khronos Vulkan Samples repository at
* https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/extensions/debug_utils.
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
// Offscreen properties
#define OFFSCREEN_DIM 256
#define OFFSCREEN_FORMAT VK_FORMAT_R8G8B8A8_UNORM
#define OFFSCREEN_FILTER VK_FILTER_LINEAR;
// Setup and functions for the VK_EXT_debug_marker_extension
// Extension spec can be found at https://github.com/KhronosGroup/Vulkan-Docs/blob/1.0-VK_EXT_debug_marker/doc/specs/vulkan/appendices/VK_EXT_debug_marker.txt
// Note that the extension will only be present if run from an offline debugging application
namespace DebugMarker
{
bool active = false;
bool extensionPresent = false;
PFN_vkDebugMarkerSetObjectTagEXT vkDebugMarkerSetObjectTag = VK_NULL_HANDLE;
PFN_vkDebugMarkerSetObjectNameEXT vkDebugMarkerSetObjectName = VK_NULL_HANDLE;
PFN_vkCmdDebugMarkerBeginEXT vkCmdDebugMarkerBegin = VK_NULL_HANDLE;
PFN_vkCmdDebugMarkerEndEXT vkCmdDebugMarkerEnd = VK_NULL_HANDLE;
PFN_vkCmdDebugMarkerInsertEXT vkCmdDebugMarkerInsert = VK_NULL_HANDLE;
// Get function pointers for the debug report extensions from the device
void setup(VkDevice device, VkPhysicalDevice physicalDevice)
{
// Check if the debug marker extension is present (which is the case if run from a graphics debugger)
uint32_t extensionCount;
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, nullptr);
std::vector<VkExtensionProperties> extensions(extensionCount);
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, extensions.data());
for (auto extension : extensions) {
if (strcmp(extension.extensionName, VK_EXT_DEBUG_MARKER_EXTENSION_NAME) == 0) {
extensionPresent = true;
break;
}
}
if (extensionPresent) {
// The debug marker extension is not part of the core, so function pointers need to be loaded manually
vkDebugMarkerSetObjectTag = (PFN_vkDebugMarkerSetObjectTagEXT)vkGetDeviceProcAddr(device, "vkDebugMarkerSetObjectTagEXT");
vkDebugMarkerSetObjectName = (PFN_vkDebugMarkerSetObjectNameEXT)vkGetDeviceProcAddr(device, "vkDebugMarkerSetObjectNameEXT");
vkCmdDebugMarkerBegin = (PFN_vkCmdDebugMarkerBeginEXT)vkGetDeviceProcAddr(device, "vkCmdDebugMarkerBeginEXT");
vkCmdDebugMarkerEnd = (PFN_vkCmdDebugMarkerEndEXT)vkGetDeviceProcAddr(device, "vkCmdDebugMarkerEndEXT");
vkCmdDebugMarkerInsert = (PFN_vkCmdDebugMarkerInsertEXT)vkGetDeviceProcAddr(device, "vkCmdDebugMarkerInsertEXT");
// Set flag if at least one function pointer is present
active = (vkDebugMarkerSetObjectName != VK_NULL_HANDLE);
}
else {
std::cout << "Warning: " << VK_EXT_DEBUG_MARKER_EXTENSION_NAME << " not present, debug markers are disabled.";
std::cout << "Try running from inside a Vulkan graphics debugger (e.g. RenderDoc)" << std::endl;
}
}
// Sets the debug name of an object
// All Objects in Vulkan are represented by their 64-bit handles which are passed into this function
// along with the object type
void setObjectName(VkDevice device, uint64_t object, VkDebugReportObjectTypeEXT objectType, const char *name)
{
// Check for valid function pointer (may not be present if not running in a debugging application)
if (active)
{
VkDebugMarkerObjectNameInfoEXT nameInfo = {};
nameInfo.sType = VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT;
nameInfo.objectType = objectType;
nameInfo.object = object;
nameInfo.pObjectName = name;
vkDebugMarkerSetObjectName(device, &nameInfo);
}
}
// Set the tag for an object
void setObjectTag(VkDevice device, uint64_t object, VkDebugReportObjectTypeEXT objectType, uint64_t name, size_t tagSize, const void* tag)
{
// Check for valid function pointer (may not be present if not running in a debugging application)
if (active)
{
VkDebugMarkerObjectTagInfoEXT tagInfo = {};
tagInfo.sType = VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_TAG_INFO_EXT;
tagInfo.objectType = objectType;
tagInfo.object = object;
tagInfo.tagName = name;
tagInfo.tagSize = tagSize;
tagInfo.pTag = tag;
vkDebugMarkerSetObjectTag(device, &tagInfo);
}
}
// Start a new debug marker region
void beginRegion(VkCommandBuffer cmdbuffer, const char* pMarkerName, glm::vec4 color)
{
// Check for valid function pointer (may not be present if not running in a debugging application)
if (active)
{
VkDebugMarkerMarkerInfoEXT markerInfo = {};
markerInfo.sType = VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT;
memcpy(markerInfo.color, &color[0], sizeof(float) * 4);
markerInfo.pMarkerName = pMarkerName;
vkCmdDebugMarkerBegin(cmdbuffer, &markerInfo);
}
}
// Insert a new debug marker into the command buffer
void insert(VkCommandBuffer cmdbuffer, std::string markerName, glm::vec4 color)
{
// Check for valid function pointer (may not be present if not running in a debugging application)
if (active)
{
VkDebugMarkerMarkerInfoEXT markerInfo = {};
markerInfo.sType = VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT;
memcpy(markerInfo.color, &color[0], sizeof(float) * 4);
markerInfo.pMarkerName = markerName.c_str();
vkCmdDebugMarkerInsert(cmdbuffer, &markerInfo);
}
}
// End the current debug marker region
void endRegion(VkCommandBuffer cmdBuffer)
{
// Check for valid function (may not be present if not running in a debugging application)
if (vkCmdDebugMarkerEnd)
{
vkCmdDebugMarkerEnd(cmdBuffer);
}
}
};
struct Scene {
vkglTF::Model model;
std::vector<std::string> modelPartNames;
void draw(VkCommandBuffer cmdBuffer)
{
model.bindBuffers(cmdBuffer);
for (auto i = 0; i < model.nodes.size(); i++)
{
// Add debug marker the name of this glTF node
DebugMarker::insert(cmdBuffer, "Draw \"" + model.nodes[i]->name + "\"", glm::vec4(0.0f));
model.drawNode(model.nodes[i], cmdBuffer);
}
}
void loadFromFile(std::string filename, vks::VulkanDevice* vulkanDevice, VkQueue queue)
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
model.loadFromFile(filename, vulkanDevice, queue, glTFLoadingFlags);
}
};
class VulkanExample : public VulkanExampleBase
{
public:
bool wireframe = true;
bool glow = true;
Scene scene, sceneGlow;
vks::Buffer uniformBuffer;
struct UBOVS {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(0.0f, 5.0f, 15.0f, 1.0f);
} uboVS;
struct Pipelines {
VkPipeline toonshading;
VkPipeline color;
VkPipeline wireframe = VK_NULL_HANDLE;
VkPipeline postprocess;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSetLayout descriptorSetLayout;
struct {
VkDescriptorSet scene;
VkDescriptorSet fullscreen;
} descriptorSets;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct OffscreenPass {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color, depth;
VkRenderPass renderPass;
VkSampler sampler;
VkDescriptorImageInfo descriptor;
} offscreenPass;
// Random tag data
struct DemoTag {
const char name[17] = "debug marker tag";
} demoTag;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Debugging with VK_EXT_debug_marker";
camera.setRotation(glm::vec3(-4.35f, 16.25f, 0.0f));
camera.setRotationSpeed(0.5f);
camera.setPosition(glm::vec3(0.1f, 1.1f, -8.5f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Fill mode non solid is required for wireframe display
if (deviceFeatures.fillModeNonSolid) {
enabledFeatures.fillModeNonSolid = VK_TRUE;
};
wireframe = deviceFeatures.fillModeNonSolid;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.toonshading, nullptr);
vkDestroyPipeline(device, pipelines.color, nullptr);
vkDestroyPipeline(device, pipelines.postprocess, nullptr);
if (pipelines.wireframe != VK_NULL_HANDLE) {
vkDestroyPipeline(device, pipelines.wireframe, nullptr);
}
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
uniformBuffer.destroy();
// Offscreen
// Color attachment
vkDestroyImageView(device, offscreenPass.color.view, nullptr);
vkDestroyImage(device, offscreenPass.color.image, nullptr);
vkFreeMemory(device, offscreenPass.color.mem, nullptr);
// Depth attachment
vkDestroyImageView(device, offscreenPass.depth.view, nullptr);
vkDestroyImage(device, offscreenPass.depth.image, nullptr);
vkFreeMemory(device, offscreenPass.depth.mem, nullptr);
vkDestroyRenderPass(device, offscreenPass.renderPass, nullptr);
vkDestroySampler(device, offscreenPass.sampler, nullptr);
vkDestroyFramebuffer(device, offscreenPass.frameBuffer, nullptr);
}
// Prepare a texture target and framebuffer for offscreen rendering
void prepareOffscreen()
{
offscreenPass.width = OFFSCREEN_DIM;
offscreenPass.height = OFFSCREEN_DIM;
// Find a suitable depth format
VkFormat fbDepthFormat;
VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat);
assert(validDepthFormat);
// Color attachment
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = OFFSCREEN_FORMAT;
image.extent.width = offscreenPass.width;
image.extent.height = offscreenPass.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
// We will sample directly from the color attachment
image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offscreenPass.color.image));
vkGetImageMemoryRequirements(device, offscreenPass.color.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.color.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.color.image, offscreenPass.color.mem, 0));
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = OFFSCREEN_FORMAT;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
colorImageView.image = offscreenPass.color.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreenPass.color.view));
// Create sampler to sample from the attachment in the fragment shader
VkSamplerCreateInfo samplerInfo = vks::initializers::samplerCreateInfo();
samplerInfo.magFilter = OFFSCREEN_FILTER;
samplerInfo.minFilter = OFFSCREEN_FILTER;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerInfo.addressModeV = samplerInfo.addressModeU;
samplerInfo.addressModeW = samplerInfo.addressModeU;
samplerInfo.mipLodBias = 0.0f;
samplerInfo.maxAnisotropy = 1.0f;
samplerInfo.minLod = 0.0f;
samplerInfo.maxLod = 1.0f;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerInfo, nullptr, &offscreenPass.sampler));
// Depth stencil attachment
image.format = fbDepthFormat;
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offscreenPass.depth.image));
vkGetImageMemoryRequirements(device, offscreenPass.depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.depth.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.depth.image, offscreenPass.depth.mem, 0));
VkImageViewCreateInfo depthStencilView = vks::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = fbDepthFormat;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
depthStencilView.image = offscreenPass.depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offscreenPass.depth.view));
// Create a separate render pass for the offscreen rendering as it may differ from the one used for scene rendering
std::array<VkAttachmentDescription, 2> attchmentDescriptions = {};
// Color attachment
attchmentDescriptions[0].format = OFFSCREEN_FORMAT;
attchmentDescriptions[0].samples = VK_SAMPLE_COUNT_1_BIT;
attchmentDescriptions[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attchmentDescriptions[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attchmentDescriptions[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attchmentDescriptions[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attchmentDescriptions[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attchmentDescriptions[0].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Depth attachment
attchmentDescriptions[1].format = fbDepthFormat;
attchmentDescriptions[1].samples = VK_SAMPLE_COUNT_1_BIT;
attchmentDescriptions[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attchmentDescriptions[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attchmentDescriptions[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attchmentDescriptions[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attchmentDescriptions[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attchmentDescriptions[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkAttachmentReference depthReference = { 1, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL };
VkSubpassDescription subpassDescription = {};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1;
subpassDescription.pColorAttachments = &colorReference;
subpassDescription.pDepthStencilAttachment = &depthReference;
// Use subpass dependencies for layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
// Create the actual renderpass
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = static_cast<uint32_t>(attchmentDescriptions.size());
renderPassInfo.pAttachments = attchmentDescriptions.data();
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpassDescription;
renderPassInfo.dependencyCount = static_cast<uint32_t>(dependencies.size());
renderPassInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &offscreenPass.renderPass));
VkImageView attachments[2];
attachments[0] = offscreenPass.color.view;
attachments[1] = offscreenPass.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = offscreenPass.renderPass;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.width = offscreenPass.width;
fbufCreateInfo.height = offscreenPass.height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreenPass.frameBuffer));
// Fill a descriptor for later use in a descriptor set
offscreenPass.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
offscreenPass.descriptor.imageView = offscreenPass.color.view;
offscreenPass.descriptor.sampler = offscreenPass.sampler;
// Name some objects for debugging
DebugMarker::setObjectName(device, (uint64_t)offscreenPass.color.image, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, "Off-screen color framebuffer");
DebugMarker::setObjectName(device, (uint64_t)offscreenPass.depth.image, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, "Off-screen depth framebuffer");
DebugMarker::setObjectName(device, (uint64_t)offscreenPass.sampler, VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, "Off-screen framebuffer default sampler");
}
void loadAssets()
{
scene.loadFromFile(getAssetPath() + "models/treasure_smooth.gltf", vulkanDevice, queue);
sceneGlow.loadFromFile(getAssetPath() + "models/treasure_glow.gltf", vulkanDevice, queue);
// Name the buffers for debugging
// Scene
DebugMarker::setObjectName(device, (uint64_t)scene.model.vertices.buffer, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, "Scene vertex buffer");
DebugMarker::setObjectName(device, (uint64_t)scene.model.indices.buffer, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, "Scene index buffer");
// Glow
DebugMarker::setObjectName(device, (uint64_t)sceneGlow.model.vertices.buffer, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, "Glow vertex buffer");
DebugMarker::setObjectName(device, (uint64_t)sceneGlow.model.indices.buffer, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, "Glow index buffer");
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
VkViewport viewport;
VkRect2D scissor;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
First render pass: Offscreen rendering
*/
if (glow)
{
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = offscreenPass.renderPass;
renderPassBeginInfo.framebuffer = offscreenPass.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = offscreenPass.width;
renderPassBeginInfo.renderArea.extent.height = offscreenPass.height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
// Start a new debug marker region
DebugMarker::beginRegion(drawCmdBuffers[i], "Off-screen scene rendering", glm::vec4(1.0f, 0.78f, 0.05f, 1.0f));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.scene, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.color);
sceneGlow.draw(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
DebugMarker::endRegion(drawCmdBuffers[i]);
}
/*
Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies
*/
/*
Second render pass: Scene rendering with applied bloom
*/
{
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
// Start a new debug marker region
DebugMarker::beginRegion(drawCmdBuffers[i], "Render scene", glm::vec4(0.5f, 0.76f, 0.34f, 1.0f));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(wireframe ? width / 2 : width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.scene, 0, NULL);
// Solid rendering
// Start a new debug marker region
DebugMarker::beginRegion(drawCmdBuffers[i], "Toon shading draw", glm::vec4(0.78f, 0.74f, 0.9f, 1.0f));
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.toonshading);
scene.draw(drawCmdBuffers[i]);
DebugMarker::endRegion(drawCmdBuffers[i]);
// Wireframe rendering
if (wireframe)
{
// Insert debug marker
DebugMarker::beginRegion(drawCmdBuffers[i], "Wireframe draw", glm::vec4(0.53f, 0.78f, 0.91f, 1.0f));
scissor.offset.x = width / 2;
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.wireframe);
scene.draw(drawCmdBuffers[i]);
DebugMarker::endRegion(drawCmdBuffers[i]);
scissor.offset.x = 0;
scissor.extent.width = width;
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
}
// Post processing
if (glow)
{
DebugMarker::beginRegion(drawCmdBuffers[i], "Apply post processing", glm::vec4(0.93f, 0.89f, 0.69f, 1.0f));
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.postprocess);
// Full screen quad is generated by the vertex shaders, so we reuse four vertices (for four invocations) from current vertex buffer
vkCmdDraw(drawCmdBuffers[i], 4, 1, 0, 0);
DebugMarker::endRegion(drawCmdBuffers[i]);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
// End current debug marker region
DebugMarker::endRegion(drawCmdBuffers[i]);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void setupDescriptorPool()
{
// Example uses one ubo and one combined image sampler
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes.size(), poolSizes.data(), 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1 : Fragment shader combined sampler
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Name for debugging
DebugMarker::setObjectName(device, (uint64_t)pipelineLayout, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, "Shared pipeline layout");
DebugMarker::setObjectName(device, (uint64_t)descriptorSetLayout, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, "Shared descriptor set layout");
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
// Binding 1 : Color map
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &offscreenPass.descriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), dynamicStateEnables.size(), 0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = shaderStages.size();
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color});
// Toon shading pipeline
shaderStages[0] = loadShader(getShadersPath() + "debugmarker/toon.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "debugmarker/toon.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.toonshading));
// Color only pipeline
shaderStages[0] = loadShader(getShadersPath() + "debugmarker/colorpass.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "debugmarker/colorpass.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
pipelineCI.renderPass = offscreenPass.renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.color));
// Wire frame rendering pipeline
if (deviceFeatures.fillModeNonSolid)
{
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_LINE;
pipelineCI.renderPass = renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe));
}
// Post processing effect
shaderStages[0] = loadShader(getShadersPath() + "debugmarker/postprocess.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "debugmarker/postprocess.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
depthStencilStateCI.depthTestEnable = VK_FALSE;
depthStencilStateCI.depthWriteEnable = VK_FALSE;
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_FILL;
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
blendAttachmentState.colorWriteMask = 0xF;
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.postprocess));
// Name shader modules for debugging
// Shader module count starts at 2 when UI overlay in base class is enabled
uint32_t moduleIndex = settings.overlay ? 2 : 0;
DebugMarker::setObjectName(device, (uint64_t)shaderModules[moduleIndex + 0], VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, "Toon shading vertex shader");
DebugMarker::setObjectName(device, (uint64_t)shaderModules[moduleIndex + 1], VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, "Toon shading fragment shader");
DebugMarker::setObjectName(device, (uint64_t)shaderModules[moduleIndex + 2], VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, "Color-only vertex shader");
DebugMarker::setObjectName(device, (uint64_t)shaderModules[moduleIndex + 3], VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, "Color-only fragment shader");
DebugMarker::setObjectName(device, (uint64_t)shaderModules[moduleIndex + 4], VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, "Postprocess vertex shader");
DebugMarker::setObjectName(device, (uint64_t)shaderModules[moduleIndex + 5], VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, "Postprocess fragment shader");
// Name pipelines for debugging
DebugMarker::setObjectName(device, (uint64_t)pipelines.toonshading, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, "Toon shading pipeline");
DebugMarker::setObjectName(device, (uint64_t)pipelines.color, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, "Color only pipeline");
if (deviceFeatures.fillModeNonSolid)
{
DebugMarker::setObjectName(device, (uint64_t)pipelines.wireframe, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, "Wireframe rendering pipeline");
}
DebugMarker::setObjectName(device, (uint64_t)pipelines.postprocess, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, "Post processing pipeline");
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffer,
sizeof(uboVS)));
// Map persistent
VK_CHECK_RESULT(uniformBuffer.map());
// Name uniform buffer for debugging
DebugMarker::setObjectName(device, (uint64_t)uniformBuffer.buffer, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, "Scene uniform buffer block");
// Add some random tag
DebugMarker::setObjectTag(device, (uint64_t)uniformBuffer.buffer, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, 0, sizeof(demoTag), &demoTag);
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVS.projection = camera.matrices.perspective;
uboVS.model = camera.matrices.view;
memcpy(uniformBuffer.mapped, &uboVS, sizeof(uboVS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
DebugMarker::setup(device, physicalDevice);
loadAssets();
prepareOffscreen();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated)
updateUniformBuffers();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Info")) {
overlay->text("VK_EXT_debug_marker %s", (DebugMarker::active ? "active" : "not present"));
}
if (overlay->header("Settings")) {
if (overlay->checkBox("Glow", &glow)) {
buildCommandBuffers();
}
if (deviceFeatures.fillModeNonSolid) {
if (overlay->checkBox("Wireframe", &wireframe)) {
buildCommandBuffers();
}
}
}
}
};
VULKAN_EXAMPLE_MAIN()