procedural-3d-engine/examples/dynamicrendering/dynamicrendering.cpp
2024-01-04 17:09:53 +01:00

316 lines
14 KiB
C++

/*
* Vulkan Example - Using VK_KHR_dynamic_rendering for rendering without framebuffers and render passes
*
* Copyright (C) 2022-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
class VulkanExample : public VulkanExampleBase
{
public:
PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR{ VK_NULL_HANDLE };
PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR{ VK_NULL_HANDLE };
VkPhysicalDeviceDynamicRenderingFeaturesKHR enabledDynamicRenderingFeaturesKHR{};
vkglTF::Model model;
struct UniformData {
glm::mat4 projection;
glm::mat4 modelView;
glm::vec4 viewPos;
} uniformData;
vks::Buffer uniformBuffer;
VkPipeline pipeline{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VulkanExample() : VulkanExampleBase()
{
title = "Dynamic rendering";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -10.0f));
camera.setRotation(glm::vec3(-7.5f, 72.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
// The sample uses the extension (instead of Vulkan 1.2, where dynamic rendering is core)
enabledDeviceExtensions.push_back(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME);
// in addition to the extension, the feature needs to be explicitly enabled too by chaining the extension structure into device creation
enabledDynamicRenderingFeaturesKHR.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES_KHR;
enabledDynamicRenderingFeaturesKHR.dynamicRendering = VK_TRUE;
deviceCreatepNextChain = &enabledDynamicRenderingFeaturesKHR;
}
~VulkanExample()
{
if (device) {
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
uniformBuffer.destroy();
}
}
void setupRenderPass()
{
// With VK_KHR_dynamic_rendering we no longer need a render pass, so skip the sample base render pass setup
renderPass = VK_NULL_HANDLE;
}
void setupFrameBuffer()
{
// With VK_KHR_dynamic_rendering we no longer need a frame buffer, so skip the sample base framebuffer setup
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
};
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
model.loadFromFile(getAssetPath() + "models/voyager.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// With dynamic rendering there are no subpass dependencies, so we need to take care of proper layout transitions by using barriers
// This set of barriers prepares the color and depth images for output
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
swapChain.buffers[i].image,
0,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
depthStencil.image,
0,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
VkImageSubresourceRange{ VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1 });
// New structures are used to define the attachments used in dynamic rendering
VkRenderingAttachmentInfoKHR colorAttachment{};
colorAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
colorAttachment.imageView = swapChain.buffers[i].view;
colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
colorAttachment.clearValue.color = { 0.0f,0.0f,0.0f,0.0f };
// A single depth stencil attachment info can be used, but they can also be specified separately.
// When both are specified separately, the only requirement is that the image view is identical.
VkRenderingAttachmentInfoKHR depthStencilAttachment{};
depthStencilAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
depthStencilAttachment.imageView = depthStencil.view;
depthStencilAttachment.imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
depthStencilAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
depthStencilAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
depthStencilAttachment.clearValue.depthStencil = { 1.0f, 0 };
VkRenderingInfoKHR renderingInfo{};
renderingInfo.sType = VK_STRUCTURE_TYPE_RENDERING_INFO_KHR;
renderingInfo.renderArea = { 0, 0, width, height };
renderingInfo.layerCount = 1;
renderingInfo.colorAttachmentCount = 1;
renderingInfo.pColorAttachments = &colorAttachment;
renderingInfo.pDepthAttachment = &depthStencilAttachment;
renderingInfo.pStencilAttachment = &depthStencilAttachment;
// Begin dynamic rendering
vkCmdBeginRenderingKHR(drawCmdBuffers[i], &renderingInfo);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
model.draw(drawCmdBuffers[i], vkglTF::RenderFlags::BindImages, pipelineLayout);
drawUI(drawCmdBuffers[i]);
// End dynamic rendering
vkCmdEndRenderingKHR(drawCmdBuffers[i]);
// This set of barriers prepares the color image for presentation, we don't need to care for the depth image
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
swapChain.buffers[i].image,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
0,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
const std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// Layout
// Uses set 0 for passing vertex shader ubo and set 1 for fragment shader images (taken from glTF model)
const std::vector<VkDescriptorSetLayout> setLayouts = {
descriptorSetLayout,
vkglTF::descriptorSetLayoutImage,
};
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), 2);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages{};
// We no longer need to set a renderpass for the pipeline create info
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo();
pipelineCI.layout = pipelineLayout;
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV });
// New create info to define color, depth and stencil attachments at pipeline create time
VkPipelineRenderingCreateInfoKHR pipelineRenderingCreateInfo{};
pipelineRenderingCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO_KHR;
pipelineRenderingCreateInfo.colorAttachmentCount = 1;
pipelineRenderingCreateInfo.pColorAttachmentFormats = &swapChain.colorFormat;
pipelineRenderingCreateInfo.depthAttachmentFormat = depthFormat;
pipelineRenderingCreateInfo.stencilAttachmentFormat = depthFormat;
// Chain into the pipeline creat einfo
pipelineCI.pNext = &pipelineRenderingCreateInfo;
shaderStages[0] = loadShader(getShadersPath() + "dynamicrendering/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "dynamicrendering/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(uniformData), &uniformData));
VK_CHECK_RESULT(uniformBuffer.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
uniformData.projection = camera.matrices.perspective;
uniformData.modelView = camera.matrices.view;
uniformData.viewPos = camera.viewPos;
memcpy(uniformBuffer.mapped, &uniformData, sizeof(uniformData));
}
void prepare()
{
VulkanExampleBase::prepare();
// Since we use an extension, we need to expliclity load the function pointers for extension related Vulkan commands
vkCmdBeginRenderingKHR = reinterpret_cast<PFN_vkCmdBeginRenderingKHR>(vkGetDeviceProcAddr(device, "vkCmdBeginRenderingKHR"));
vkCmdEndRenderingKHR = reinterpret_cast<PFN_vkCmdEndRenderingKHR>(vkGetDeviceProcAddr(device, "vkCmdEndRenderingKHR"));
loadAssets();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffers();
draw();
}
};
VULKAN_EXAMPLE_MAIN()