procedural-3d-engine/offscreen/offscreen.cpp

1080 lines
No EOL
38 KiB
C++

/*
* Vulkan Example - Offscreen rendering using a separate framebuffer
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Texture properties
#define TEX_DIM 512
#define TEX_FORMAT VK_FORMAT_R8G8B8A8_UNORM
#define TEX_FILTER VK_FILTER_LINEAR
// Offscreen frame buffer properties
#define FB_DIM TEX_DIM
#define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_UV,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
vkMeshLoader::VERTEX_LAYOUT_NORMAL
};
class VulkanExample : public VulkanExampleBase
{
public:
bool debugDisplay = false;
struct {
vkTools::VulkanTexture colorMap;
} textures;
struct {
vkMeshLoader::MeshBuffer example;
vkMeshLoader::MeshBuffer quad;
vkMeshLoader::MeshBuffer plane;
} meshes;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkTools::UniformData vsShared;
vkTools::UniformData vsMirror;
vkTools::UniformData vsOffScreen;
vkTools::UniformData vsDebugQuad;
} uniformData;
struct UBO {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 1.0f);
};
struct {
UBO vsShared;
} ubos;
struct {
VkPipeline debug;
VkPipeline shaded;
VkPipeline shadedOffscreen;
VkPipeline mirror;
} pipelines;
struct {
VkPipelineLayout textured;
VkPipelineLayout shaded;
} pipelineLayouts;
struct {
VkDescriptorSet offscreen;
VkDescriptorSet mirror;
VkDescriptorSet model;
VkDescriptorSet debugQuad;
} descriptorSets;
struct {
VkDescriptorSetLayout textured;
VkDescriptorSetLayout shaded;
} descriptorSetLayouts;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct FrameBuffer {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color, depth;
VkSampler colorSampler;
} offScreenFrameBuf;
VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE;
// Semaphore used to synchronize between offscreen and final scene rendering
VkSemaphore offscreenSemaphore = VK_NULL_HANDLE;
glm::vec3 meshPos = glm::vec3(0.0f, -1.5f, 0.0f);
glm::vec3 meshRot = glm::vec3(0.0f);
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -6.0f;
rotation = { -2.5f, 0.0f, 0.0f };
cameraPos = { 0.0f, 1.0f, 0.0f };
timerSpeed *= 0.25f;
enableTextOverlay = true;
title = "Vulkan Example - Offscreen rendering";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
// Textures
textureLoader->destroyTexture(textures.colorMap);
vkDestroySampler(device, offScreenFrameBuf.colorSampler, nullptr);
// Frame buffer
// Color attachment
vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr);
// Depth attachment
vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr);
vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr);
vkDestroyPipeline(device, pipelines.debug, nullptr);
vkDestroyPipeline(device, pipelines.shaded, nullptr);
vkDestroyPipeline(device, pipelines.shadedOffscreen, nullptr);
vkDestroyPipeline(device, pipelines.mirror, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.textured, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.shaded, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.shaded, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textured, nullptr);
// Meshes
vkMeshLoader::freeMeshBufferResources(device, &meshes.example);
vkMeshLoader::freeMeshBufferResources(device, &meshes.quad);
vkMeshLoader::freeMeshBufferResources(device, &meshes.plane);
// Uniform buffers
vkTools::destroyUniformData(device, &uniformData.vsShared);
vkTools::destroyUniformData(device, &uniformData.vsMirror);
vkTools::destroyUniformData(device, &uniformData.vsOffScreen);
vkTools::destroyUniformData(device, &uniformData.vsDebugQuad);
vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer);
vkDestroySemaphore(device, offscreenSemaphore, nullptr);
}
// Setup the offscreen framebuffer for rendering the mirrored scene
// The color attachment of this framebuffer will then be used
// to sample frame in the fragment shader of the final pass
void prepareOffscreenFramebuffer()
{
offScreenFrameBuf.width = FB_DIM;
offScreenFrameBuf.height = FB_DIM;
VkFormat fbColorFormat = FB_COLOR_FORMAT;
// Find a suitable depth format
VkFormat fbDepthFormat;
VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat);
assert(validDepthFormat);
// Color attachment
VkImageCreateInfo image = vkTools::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = fbColorFormat;
image.extent.width = offScreenFrameBuf.width;
image.extent.height = offScreenFrameBuf.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
// We will sample directly from the color attachment
image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = fbColorFormat;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.color.image));
vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0));
// Get a primary command buffer for submitting image layout transitions for the framebuffer attachments
VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Set the initial layout to shader read instead of attachment
// This is done as the render loop does the actualy image layout transitions
vkTools::setImageLayout(
layoutCmd,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
colorImageView.image = offScreenFrameBuf.color.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view));
// Create sampler to sample from to collor attachment
// Used to sample in the fragment shader for final rendering
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &offScreenFrameBuf.colorSampler));
// Depth stencil attachment
image.format = fbDepthFormat;
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = fbDepthFormat;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.depth.image));
vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0));
vkTools::setImageLayout(
layoutCmd,
offScreenFrameBuf.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
// Submit the command buffer to apply the image memory barrier
VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true);
depthStencilView.image = offScreenFrameBuf.depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view));
VkImageView attachments[2];
attachments[0] = offScreenFrameBuf.color.view;
attachments[1] = offScreenFrameBuf.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = vkTools::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = renderPass;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.width = offScreenFrameBuf.width;
fbufCreateInfo.height = offScreenFrameBuf.height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer));
}
// Sets up the command buffer that renders the scene to the offscreen frame buffer
void buildOffscreenCommandBuffer()
{
if (offScreenCmdBuffer == VK_NULL_HANDLE)
{
offScreenCmdBuffer = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false);
}
// Create a semaphore used to synchronize offscreen rendering and usage
VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenSemaphore));
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width;
renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VK_CHECK_RESULT(vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo));
// Change back layout of the color attachment after sampling in the fragment shader
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport((float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f);
vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0);
vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Mirrored scene
vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.shaded, 0, 1, &descriptorSets.offscreen, 0, NULL);
vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shadedOffscreen);
vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets);
vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(offScreenCmdBuffer, meshes.example.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(offScreenCmdBuffer);
// Change layout of the color attachment for sampling in the fragment shader
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VK_CHECK_RESULT(vkEndCommandBuffer(offScreenCmdBuffer));
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
if (debugDisplay)
{
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.textured, 0, 1, &descriptorSets.debugQuad, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0);
}
// Scene
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug);
// Reflection plane
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.textured, 0, 1, &descriptorSets.mirror, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.mirror);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.plane.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.plane.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.plane.indexCount, 1, 0, 0, 0);
// Model
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.shaded, 0, 1, &descriptorSets.model, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shaded);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.example.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadMeshes()
{
loadMesh(getAssetPath() + "models/plane.obj", &meshes.plane, vertexLayout, 0.4f);
loadMesh(getAssetPath() + "models/chinesedragon.dae", &meshes.example, vertexLayout, 0.3f);
}
void loadTextures()
{
textureLoader->loadTexture(
getAssetPath() + "textures/darkmetal_bc3.ktx",
VK_FORMAT_BC3_UNORM_BLOCK,
&textures.colorMap);
}
void generateQuad()
{
// Setup vertices for a single uv-mapped quad
struct Vertex {
float pos[3];
float uv[2];
float col[3];
float normal[3];
};
#define QUAD_COLOR_NORMAL { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, 1.0f }
std::vector<Vertex> vertexBuffer =
{
{ { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f }, QUAD_COLOR_NORMAL },
{ { 0.0f, 1.0f, 0.0f },{ 0.0f, 1.0f }, QUAD_COLOR_NORMAL },
{ { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f }, QUAD_COLOR_NORMAL },
{ { 1.0f, 0.0f, 0.0f },{ 1.0f, 0.0f }, QUAD_COLOR_NORMAL }
};
#undef QUAD_COLOR_NORMAL
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
vertexBuffer.size() * sizeof(Vertex),
vertexBuffer.data(),
&meshes.quad.vertices.buf,
&meshes.quad.vertices.mem);
// Setup indices
std::vector<uint32_t> indexBuffer = { 0,1,2, 2,3,0 };
meshes.quad.indexCount = indexBuffer.size();
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
indexBuffer.size() * sizeof(uint32_t),
indexBuffer.data(),
&meshes.quad.indices.buf,
&meshes.quad.indices.mem);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Color
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 5);
// Location 3 : Normal
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 6),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 8)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
5);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
VkDescriptorSetLayoutCreateInfo descriptorLayoutInfo;
VkPipelineLayoutCreateInfo pipelineLayoutInfo;
// Binding 0 : Vertex shader uniform buffer
setLayoutBindings.push_back(vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0));
// Binding 1 : Fragment shader image sampler
setLayoutBindings.push_back(vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1));
// Binding 2 : Fragment shader image sampler
setLayoutBindings.push_back(vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2));
// Shaded layouts (only use first layout binding)
descriptorLayoutInfo = vkTools::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), 1);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutInfo, nullptr, &descriptorSetLayouts.shaded));
pipelineLayoutInfo = vkTools::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.shaded, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayouts.shaded));
// Textured layouts (use all layout bindings)
descriptorLayoutInfo = vkTools::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutInfo, nullptr, &descriptorSetLayouts.textured));
pipelineLayoutInfo = vkTools::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.textured, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayouts.textured));
}
void setupDescriptorSet()
{
// Mirror plane descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayouts.textured,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.mirror));
// Image descriptor for the offscreen mirror color attachment image
VkDescriptorImageInfo texDescriptorMirror =
vkTools::initializers::descriptorImageInfo(
offScreenFrameBuf.colorSampler,
offScreenFrameBuf.color.view,
VK_IMAGE_LAYOUT_GENERAL);
// Image descriptor for the color map
VkDescriptorImageInfo texDescriptorColorMap =
vkTools::initializers::descriptorImageInfo(
textures.colorMap.sampler,
textures.colorMap.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.mirror,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsMirror.descriptor),
// Binding 1 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSets.mirror,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorMirror),
// Binding 2 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSets.mirror,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&texDescriptorColorMap)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Debug quad
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.debugQuad));
std::vector<VkWriteDescriptorSet> debugQuadWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.debugQuad,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsDebugQuad.descriptor),
// Binding 1 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSets.debugQuad,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorMirror)
};
vkUpdateDescriptorSets(device, debugQuadWriteDescriptorSets.size(), debugQuadWriteDescriptorSets.data(), 0, NULL);
// Shaded descriptor sets
allocInfo.pSetLayouts = &descriptorSetLayouts.shaded;
// Model
// No texture
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.model));
std::vector<VkWriteDescriptorSet> modelWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.model,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsShared.descriptor)
};
vkUpdateDescriptorSets(device, modelWriteDescriptorSets.size(), modelWriteDescriptorSets.data(), 0, NULL);
// Offscreen
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen));
std::vector<VkWriteDescriptorSet> offScreenWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.offscreen,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsOffScreen.descriptor)
};
vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_FRONT_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Solid rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/offscreen/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/offscreen/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayouts.textured,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.debug));
// Flip culling
rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
// Mirror
shaderStages[0] = loadShader(getAssetPath() + "shaders/offscreen/mirror.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/offscreen/mirror.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.mirror));
// Phong shading pipelines
pipelineCreateInfo.layout = pipelineLayouts.shaded;
// Scene
shaderStages[0] = loadShader(getAssetPath() + "shaders/offscreen/phong.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/offscreen/phong.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.shaded));
// Offscreen
// Flip culling
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.shadedOffscreen));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Mesh vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(ubos.vsShared),
nullptr,
&uniformData.vsShared.buffer,
&uniformData.vsShared.memory,
&uniformData.vsShared.descriptor);
// Mirror plane vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(ubos.vsShared),
nullptr,
&uniformData.vsMirror.buffer,
&uniformData.vsMirror.memory,
&uniformData.vsMirror.descriptor);
// Offscreen vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(ubos.vsShared),
nullptr,
&uniformData.vsOffScreen.buffer,
&uniformData.vsOffScreen.memory,
&uniformData.vsOffScreen.descriptor);
// Debug quad vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
sizeof(ubos.vsShared),
nullptr,
&uniformData.vsDebugQuad.buffer,
&uniformData.vsDebugQuad.memory,
&uniformData.vsDebugQuad.descriptor);
updateUniformBuffers();
updateUniformBufferOffscreen();
}
void updateUniformBuffers()
{
// Mesh
ubos.vsShared.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
ubos.vsShared.model = viewMatrix * glm::translate(glm::mat4(), cameraPos);
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.y + meshRot.y), glm::vec3(0.0f, 1.0f, 0.0f));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
ubos.vsShared.model = glm::translate(ubos.vsShared.model, meshPos);
uint8_t *pData;
VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsShared.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData));
memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared));
vkUnmapMemory(device, uniformData.vsShared.memory);
// Mirror
ubos.vsShared.model = viewMatrix * glm::translate(glm::mat4(), cameraPos);
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsMirror.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData));
memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared));
vkUnmapMemory(device, uniformData.vsMirror.memory);
// Debug quad
ubos.vsShared.projection = glm::ortho(4.0f, 0.0f, 0.0f, 4.0f*(float)height / (float)width, -1.0f, 1.0f);
ubos.vsShared.model = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, 0.0f));
VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsDebugQuad.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData));
memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared));
vkUnmapMemory(device, uniformData.vsDebugQuad.memory);
}
void updateUniformBufferOffscreen()
{
ubos.vsShared.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
ubos.vsShared.model = viewMatrix * glm::translate(glm::mat4(), cameraPos);
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.y + meshRot.y), glm::vec3(0.0f, 1.0f, 0.0f));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
ubos.vsShared.model = glm::scale(ubos.vsShared.model, glm::vec3(1.0f, -1.0f, 1.0f));
ubos.vsShared.model = glm::translate(ubos.vsShared.model, meshPos);
uint8_t *pData;
VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsOffScreen.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData));
memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared));
vkUnmapMemory(device, uniformData.vsOffScreen.memory);
}
void draw()
{
VulkanExampleBase::prepareFrame();
// The scene render command buffer has to wait for the offscreen
// rendering to be finished before we can use the framebuffer
// color image for sampling during final rendering
// To ensure this we use a dedicated offscreen synchronization
// semaphore that will be signaled when offscreen renderin
// has been finished
// This is necessary as an implementation may start both
// command buffers at the same time, there is no guarantee
// that command buffers will be executed in the order they
// have been submitted by the application
// Offscreen rendering
// Wait for swap chain presentation to finish
submitInfo.pWaitSemaphores = &semaphores.presentComplete;
// Signal ready with offscreen semaphore
submitInfo.pSignalSemaphores = &offscreenSemaphore;
// Submit work
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &offScreenCmdBuffer;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
// Scene rendering
// Wait for offscreen semaphore
submitInfo.pWaitSemaphores = &offscreenSemaphore;
// Signal ready with render complete semaphpre
submitInfo.pSignalSemaphores = &semaphores.renderComplete;
// Submit work
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadTextures();
generateQuad();
loadMeshes();
prepareOffscreenFramebuffer();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
buildOffscreenCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused)
{
meshRot.y += frameTimer * 10.0f;
updateUniformBuffers();
updateUniformBufferOffscreen();
}
}
virtual void viewChanged()
{
updateUniformBuffers();
updateUniformBufferOffscreen();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case 0x44:
case GAMEPAD_BUTTON_A:
toggleDebugDisplay();
break;
}
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
#if defined(__ANDROID__)
textOverlay->addText("Press \"Button A\" to display offscreen target", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
#else
textOverlay->addText("Press \"d\" to display offscreen target", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
#endif
}
void toggleDebugDisplay()
{
debugDisplay = !debugDisplay;
reBuildCommandBuffers();
}
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
vulkanExample = new VulkanExample();
#if defined(_WIN32)
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
vulkanExample->renderLoop();
delete(vulkanExample);
#if !defined(__ANDROID__)
return 0;
#endif
}