544 lines
22 KiB
C++
544 lines
22 KiB
C++
/*
|
|
* Vulkan Example - Texture arrays and instanced rendering
|
|
*
|
|
* This sample shows how to load and render a texture array. This is a single layered texture where each layer contains different image data.
|
|
* The different layers are displayed on cubes using instancing, where each instance selects a different layer from the texture
|
|
*
|
|
* Copyright (C) 2016-2023 Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include "vulkanexamplebase.h"
|
|
#include <ktx.h>
|
|
#include <ktxvulkan.h>
|
|
|
|
#define MAX_LAYERS 8
|
|
|
|
// Vertex layout for this example
|
|
struct Vertex {
|
|
float pos[3];
|
|
float uv[2];
|
|
};
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
// Number of array layers in texture array
|
|
// Also used as instance count
|
|
uint32_t layerCount{ 0 };
|
|
vks::Texture textureArray;
|
|
|
|
vks::Buffer vertexBuffer;
|
|
vks::Buffer indexBuffer;
|
|
uint32_t indexCount{ 0 };
|
|
|
|
// Values passed to the shader per drawn instance
|
|
struct alignas(16) PerInstanceData {
|
|
// Model matrix
|
|
glm::mat4 model;
|
|
// Layer index from which this instance will sample in the fragment shader
|
|
float arrayIndex{ 0 };
|
|
};
|
|
|
|
struct UniformData {
|
|
// Global matrices
|
|
struct {
|
|
glm::mat4 projection;
|
|
glm::mat4 view;
|
|
} matrices;
|
|
// Separate data for each instance
|
|
PerInstanceData* instance{ nullptr };
|
|
} uniformData;
|
|
vks::Buffer uniformBuffer;
|
|
|
|
VkPipeline pipeline{ VK_NULL_HANDLE };
|
|
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
|
|
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
|
|
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
|
|
|
|
VulkanExample() : VulkanExampleBase()
|
|
{
|
|
title = "Texture arrays";
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPosition(glm::vec3(0.0f, 0.0f, -7.5f));
|
|
camera.setRotation(glm::vec3(-35.0f, 0.0f, 0.0f));
|
|
camera.setPerspective(45.0f, (float)width / (float)height, 0.1f, 256.0f);
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
if (device) {
|
|
vkDestroyImageView(device, textureArray.view, nullptr);
|
|
vkDestroyImage(device, textureArray.image, nullptr);
|
|
vkDestroySampler(device, textureArray.sampler, nullptr);
|
|
vkFreeMemory(device, textureArray.deviceMemory, nullptr);
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
vertexBuffer.destroy();
|
|
indexBuffer.destroy();
|
|
uniformBuffer.destroy();
|
|
delete[] uniformData.instance;
|
|
}
|
|
}
|
|
|
|
void loadTextureArray(std::string filename, VkFormat format)
|
|
{
|
|
ktxResult result;
|
|
ktxTexture* ktxTexture;
|
|
|
|
#if defined(__ANDROID__)
|
|
// Textures are stored inside the apk on Android (compressed)
|
|
// So they need to be loaded via the asset manager
|
|
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
|
if (!asset) {
|
|
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
|
|
}
|
|
size_t size = AAsset_getLength(asset);
|
|
assert(size > 0);
|
|
|
|
ktx_uint8_t *textureData = new ktx_uint8_t[size];
|
|
AAsset_read(asset, textureData, size);
|
|
AAsset_close(asset);
|
|
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
|
|
delete[] textureData;
|
|
#else
|
|
if (!vks::tools::fileExists(filename)) {
|
|
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
|
|
}
|
|
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
|
|
#endif
|
|
assert(result == KTX_SUCCESS);
|
|
|
|
// Get properties required for using and upload texture data from the ktx texture object
|
|
textureArray.width = ktxTexture->baseWidth;
|
|
textureArray.height = ktxTexture->baseHeight;
|
|
layerCount = ktxTexture->numLayers;
|
|
assert(layerCount <= MAX_LAYERS);
|
|
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
|
|
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
|
|
|
|
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
|
|
// Create a host-visible staging buffer that contains the raw image data
|
|
VkBuffer stagingBuffer;
|
|
VkDeviceMemory stagingMemory;
|
|
|
|
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
|
|
bufferCreateInfo.size = ktxTextureSize;
|
|
// This buffer is used as a transfer source for the buffer copy
|
|
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
|
|
|
|
// Get memory requirements for the staging buffer (alignment, memory type bits)
|
|
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
|
|
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
// Get memory type index for a host visible buffer
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
|
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
|
|
|
|
// Copy texture data into staging buffer
|
|
uint8_t *data;
|
|
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
|
|
memcpy(data, ktxTextureData, ktxTextureSize);
|
|
vkUnmapMemory(device, stagingMemory);
|
|
|
|
// Setup buffer copy regions for array layers
|
|
std::vector<VkBufferImageCopy> bufferCopyRegions;
|
|
|
|
// To keep this simple, we will only load layers and no mip level
|
|
for (uint32_t layer = 0; layer < layerCount; layer++)
|
|
{
|
|
// Calculate offset into staging buffer for the current array layer
|
|
ktx_size_t offset;
|
|
KTX_error_code ret = ktxTexture_GetImageOffset(ktxTexture, 0, layer, 0, &offset);
|
|
assert(ret == KTX_SUCCESS);
|
|
// Setup a buffer image copy structure for the current array layer
|
|
VkBufferImageCopy bufferCopyRegion = {};
|
|
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
bufferCopyRegion.imageSubresource.mipLevel = 0;
|
|
bufferCopyRegion.imageSubresource.baseArrayLayer = layer;
|
|
bufferCopyRegion.imageSubresource.layerCount = 1;
|
|
bufferCopyRegion.imageExtent.width = ktxTexture->baseWidth;
|
|
bufferCopyRegion.imageExtent.height = ktxTexture->baseHeight;
|
|
bufferCopyRegion.imageExtent.depth = 1;
|
|
bufferCopyRegion.bufferOffset = offset;
|
|
bufferCopyRegions.push_back(bufferCopyRegion);
|
|
}
|
|
|
|
// Create optimal tiled target image
|
|
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCreateInfo.format = format;
|
|
imageCreateInfo.mipLevels = 1;
|
|
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imageCreateInfo.extent = { textureArray.width, textureArray.height, 1 };
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
imageCreateInfo.arrayLayers = layerCount;
|
|
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &textureArray.image));
|
|
|
|
vkGetImageMemoryRequirements(device, textureArray.image, &memReqs);
|
|
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &textureArray.deviceMemory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, textureArray.image, textureArray.deviceMemory, 0));
|
|
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
|
|
// Image barrier for optimal image (target)
|
|
// Set initial layout for all array layers (faces) of the optimal (target) tiled texture
|
|
VkImageSubresourceRange subresourceRange = {};
|
|
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
subresourceRange.baseMipLevel = 0;
|
|
subresourceRange.levelCount = 1;
|
|
subresourceRange.layerCount = layerCount;
|
|
|
|
vks::tools::setImageLayout(
|
|
copyCmd,
|
|
textureArray.image,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
subresourceRange);
|
|
|
|
// Copy the cube map faces from the staging buffer to the optimal tiled image
|
|
vkCmdCopyBufferToImage(
|
|
copyCmd,
|
|
stagingBuffer,
|
|
textureArray.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
static_cast<uint32_t>(bufferCopyRegions.size()),
|
|
bufferCopyRegions.data());
|
|
|
|
// Change texture image layout to shader read after all faces have been copied
|
|
textureArray.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
vks::tools::setImageLayout(
|
|
copyCmd,
|
|
textureArray.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
textureArray.imageLayout,
|
|
subresourceRange);
|
|
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
|
|
|
// Create sampler
|
|
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
|
|
sampler.magFilter = VK_FILTER_LINEAR;
|
|
sampler.minFilter = VK_FILTER_LINEAR;
|
|
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
sampler.addressModeV = sampler.addressModeU;
|
|
sampler.addressModeW = sampler.addressModeU;
|
|
sampler.mipLodBias = 0.0f;
|
|
sampler.maxAnisotropy = 8;
|
|
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
|
sampler.minLod = 0.0f;
|
|
sampler.maxLod = 0.0f;
|
|
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &textureArray.sampler));
|
|
|
|
// Create image view
|
|
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
|
|
view.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
|
|
view.format = format;
|
|
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
view.subresourceRange.layerCount = layerCount;
|
|
view.subresourceRange.levelCount = 1;
|
|
view.image = textureArray.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &textureArray.view));
|
|
|
|
// Clean up staging resources
|
|
vkFreeMemory(device, stagingMemory, nullptr);
|
|
vkDestroyBuffer(device, stagingBuffer, nullptr);
|
|
ktxTexture_Destroy(ktxTexture);
|
|
}
|
|
|
|
void loadAssets()
|
|
{
|
|
loadTextureArray(getAssetPath() + "textures/texturearray_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM);
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets);
|
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
|
|
|
|
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, layerCount, 0, 0, 0);
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
// Creates a vertex and index buffer for a cube
|
|
// This is used to display the texture on
|
|
void generateCube()
|
|
{
|
|
std::vector<Vertex> vertices = {
|
|
{ { -1.0f, -1.0f, 1.0f }, { 0.0f, 0.0f } },
|
|
{ { 1.0f, -1.0f, 1.0f }, { 1.0f, 0.0f } },
|
|
{ { 1.0f, 1.0f, 1.0f }, { 1.0f, 1.0f } },
|
|
{ { -1.0f, 1.0f, 1.0f }, { 0.0f, 1.0f } },
|
|
|
|
{ { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f } },
|
|
{ { 1.0f, 1.0f, -1.0f }, { 1.0f, 0.0f } },
|
|
{ { 1.0f, -1.0f, -1.0f }, { 1.0f, 1.0f } },
|
|
{ { 1.0f, -1.0f, 1.0f }, { 0.0f, 1.0f } },
|
|
|
|
{ { -1.0f, -1.0f, -1.0f }, { 0.0f, 0.0f } },
|
|
{ { 1.0f, -1.0f, -1.0f }, { 1.0f, 0.0f } },
|
|
{ { 1.0f, 1.0f, -1.0f }, { 1.0f, 1.0f } },
|
|
{ { -1.0f, 1.0f, -1.0f }, { 0.0f, 1.0f } },
|
|
|
|
{ { -1.0f, -1.0f, -1.0f }, { 0.0f, 0.0f } },
|
|
{ { -1.0f, -1.0f, 1.0f }, { 1.0f, 0.0f } },
|
|
{ { -1.0f, 1.0f, 1.0f }, { 1.0f, 1.0f } },
|
|
{ { -1.0f, 1.0f, -1.0f }, { 0.0f, 1.0f } },
|
|
|
|
{ { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f } },
|
|
{ { -1.0f, 1.0f, 1.0f }, { 1.0f, 0.0f } },
|
|
{ { -1.0f, 1.0f, -1.0f }, { 1.0f, 1.0f } },
|
|
{ { 1.0f, 1.0f, -1.0f }, { 0.0f, 1.0f } },
|
|
|
|
{ { -1.0f, -1.0f, -1.0f }, { 0.0f, 0.0f } },
|
|
{ { 1.0f, -1.0f, -1.0f }, { 1.0f, 0.0f } },
|
|
{ { 1.0f, -1.0f, 1.0f }, { 1.0f, 1.0f } },
|
|
{ { -1.0f, -1.0f, 1.0f }, { 0.0f, 1.0f } },
|
|
};
|
|
std::vector<uint32_t> indices = {
|
|
0,1,2, 0,2,3, 4,5,6, 4,6,7, 8,9,10, 8,10,11, 12,13,14, 12,14,15, 16,17,18, 16,18,19, 20,21,22, 20,22,23
|
|
};
|
|
|
|
indexCount = static_cast<uint32_t>(indices.size());
|
|
|
|
// Create buffers and upload data to the GPU
|
|
struct StagingBuffers {
|
|
vks::Buffer vertices;
|
|
vks::Buffer indices;
|
|
} stagingBuffers;
|
|
|
|
// Host visible source buffers (staging)
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.vertices, vertices.size() * sizeof(Vertex), vertices.data()));
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.indices, indices.size() * sizeof(uint32_t), indices.data()));
|
|
|
|
// Device local destination buffers
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex)));
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &indexBuffer, indices.size() * sizeof(uint32_t)));
|
|
|
|
// Copy from host do device
|
|
vulkanDevice->copyBuffer(&stagingBuffers.vertices, &vertexBuffer, queue);
|
|
vulkanDevice->copyBuffer(&stagingBuffers.indices, &indexBuffer, queue);
|
|
|
|
// Clean up
|
|
stagingBuffers.vertices.destroy();
|
|
stagingBuffers.indices.destroy();
|
|
}
|
|
|
|
void setupDescriptors()
|
|
{
|
|
// Pool
|
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
|
|
};
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
|
|
// Layout
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
|
|
// Binding 1 : Fragment shader image sampler
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
|
|
// Set
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
|
|
|
// Image descriptor for the texture array
|
|
VkDescriptorImageInfo textureDescriptor =
|
|
vks::initializers::descriptorImageInfo(
|
|
textureArray.sampler,
|
|
textureArray.view,
|
|
textureArray.imageLayout);
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
|
|
// Binding 1 : Fragment shader texture sampler
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureDescriptor)
|
|
};
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
// Layout
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
|
|
// Pipeline
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
|
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables, 0);
|
|
|
|
// Vertex bindings and attributes
|
|
VkVertexInputBindingDescription vertexInputBinding = { 0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX };
|
|
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
|
|
{ 0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos) },
|
|
{ 1, 0, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv) },
|
|
};
|
|
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertexInputStateCI.vertexBindingDescriptionCount = 1;
|
|
vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding;
|
|
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
|
|
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
|
|
|
|
// Instancing pipeline
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
shaderStages[0] = loadShader(getShadersPath() + "texturearray/instancing.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "texturearray/instancing.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
|
pipelineCI.pVertexInputState = &vertexInputStateCI;
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
|
|
pipelineCI.pRasterizationState = &rasterizationStateCI;
|
|
pipelineCI.pColorBlendState = &colorBlendStateCI;
|
|
pipelineCI.pMultisampleState = &multisampleStateCI;
|
|
pipelineCI.pViewportState = &viewportStateCI;
|
|
pipelineCI.pDepthStencilState = &depthStencilStateCI;
|
|
pipelineCI.pDynamicState = &dynamicStateCI;
|
|
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCI.pStages = shaderStages.data();
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
|
|
}
|
|
|
|
void prepareUniformBuffers()
|
|
{
|
|
uniformData.instance = new PerInstanceData[layerCount];
|
|
|
|
uint32_t uboSize = sizeof(uniformData.matrices) + (MAX_LAYERS * sizeof(PerInstanceData));
|
|
|
|
// Vertex shader uniform buffer block
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, uboSize));
|
|
|
|
// Array indices and model matrices are fixed
|
|
float offset = -1.5f;
|
|
float center = (layerCount*offset) / 2.0f - (offset * 0.5f);
|
|
for (uint32_t i = 0; i < layerCount; i++) {
|
|
// Instance model matrix
|
|
uniformData.instance[i].model = glm::translate(glm::mat4(1.0f), glm::vec3(i * offset - center, 0.0f, 0.0f));
|
|
uniformData.instance[i].model = glm::scale(uniformData.instance[i].model, glm::vec3(0.5f));
|
|
// Instance texture array index
|
|
uniformData.instance[i].arrayIndex = (float)i;
|
|
}
|
|
|
|
// Update instanced part of the uniform buffer
|
|
uint8_t *pData;
|
|
uint32_t dataOffset = sizeof(uniformData.matrices);
|
|
uint32_t dataSize = layerCount * sizeof(PerInstanceData);
|
|
VK_CHECK_RESULT(vkMapMemory(device, uniformBuffer.memory, dataOffset, dataSize, 0, (void **)&pData));
|
|
memcpy(pData, uniformData.instance, dataSize);
|
|
vkUnmapMemory(device, uniformBuffer.memory);
|
|
|
|
// Map persistent
|
|
VK_CHECK_RESULT(uniformBuffer.map());
|
|
}
|
|
|
|
void updateUniformBuffersCamera()
|
|
{
|
|
uniformData.matrices.projection = camera.matrices.perspective;
|
|
uniformData.matrices.view = camera.matrices.view;
|
|
memcpy(uniformBuffer.mapped, &uniformData.matrices, sizeof(uniformData.matrices));
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
loadAssets();
|
|
generateCube();
|
|
prepareUniformBuffers();
|
|
setupDescriptors();
|
|
preparePipelines();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
updateUniformBuffersCamera();
|
|
draw();
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|