procedural-3d-engine/examples/pushdescriptors/pushdescriptors.cpp
Sascha Willems d0211d1f14 Replaced per-sample validation define with global define in base class
Toggling validation via command line arguments is the preferred way anyway
Define was also added as a CMake option
2023-12-30 13:15:37 +01:00

348 lines
14 KiB
C++

/*
* Vulkan Example - Push descriptors
*
* Note: Requires a device that supports the VK_KHR_push_descriptor extension
*
* Push descriptors apply the push constants concept to descriptor sets. So instead of creating
* per-model descriptor sets (along with a pool for each descriptor type) for rendering multiple objects,
* this example uses push descriptors to pass descriptor sets for per-model textures and matrices
* at command buffer creation time.
*
* Copyright (C) 2018 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
class VulkanExample : public VulkanExampleBase
{
public:
bool animate = true;
PFN_vkCmdPushDescriptorSetKHR vkCmdPushDescriptorSetKHR;
VkPhysicalDevicePushDescriptorPropertiesKHR pushDescriptorProps{};
struct Cube {
vks::Texture2D texture;
vks::Buffer uniformBuffer;
glm::vec3 rotation;
glm::mat4 modelMat;
};
std::array<Cube, 2> cubes;
vkglTF::Model model;
struct UniformBuffers {
vks::Buffer scene;
} uniformBuffers;
struct UboScene {
glm::mat4 projection;
glm::mat4 view;
} uboScene;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase()
{
title = "Push descriptors";
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f));
// Enable extension required for push descriptors
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME);
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
for (auto cube : cubes) {
cube.uniformBuffer.destroy();
cube.texture.destroy();
}
uniformBuffers.scene.destroy();
}
virtual void getEnabledFeatures()
{
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
};
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) {
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
model.bindBuffers(drawCmdBuffers[i]);
// Render two cubes using different descriptor sets using push descriptors
for (auto cube : cubes) {
// Instead of preparing the descriptor sets up-front, using push descriptors we can set (push) them inside of a command buffer
// This allows a more dynamic approach without the need to create descriptor sets for each model
// Note: dstSet for each descriptor set write is left at zero as this is ignored when using push descriptors
std::array<VkWriteDescriptorSet, 3> writeDescriptorSets{};
// Scene matrices
writeDescriptorSets[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[0].dstSet = 0;
writeDescriptorSets[0].dstBinding = 0;
writeDescriptorSets[0].descriptorCount = 1;
writeDescriptorSets[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeDescriptorSets[0].pBufferInfo = &uniformBuffers.scene.descriptor;
// Model matrices
writeDescriptorSets[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[1].dstSet = 0;
writeDescriptorSets[1].dstBinding = 1;
writeDescriptorSets[1].descriptorCount = 1;
writeDescriptorSets[1].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeDescriptorSets[1].pBufferInfo = &cube.uniformBuffer.descriptor;
// Texture
writeDescriptorSets[2].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[2].dstSet = 0;
writeDescriptorSets[2].dstBinding = 2;
writeDescriptorSets[2].descriptorCount = 1;
writeDescriptorSets[2].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeDescriptorSets[2].pImageInfo = &cube.texture.descriptor;
vkCmdPushDescriptorSetKHR(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 3, writeDescriptorSets.data());
model.draw(drawCmdBuffers[i]);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
model.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags);
cubes[0].texture.loadFromFile(getAssetPath() + "textures/crate01_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
cubes[1].texture.loadFromFile(getAssetPath() + "textures/crate02_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{};
descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
// Setting this flag tells the descriptor set layouts that no actual descriptor sets are allocated but instead pushed at command buffer creation time
descriptorLayoutCI.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR;
descriptorLayoutCI.bindingCount = static_cast<uint32_t>(setLayoutBindings.size());
descriptorLayoutCI.pBindings = setLayoutBindings.data();
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()),0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color});
shaderStages[0] = loadShader(getShadersPath() + "pushdescriptors/cube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "pushdescriptors/cube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
void prepareUniformBuffers()
{
// Vertex shader scene uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.scene,
sizeof(UboScene)));
VK_CHECK_RESULT(uniformBuffers.scene.map());
// Vertex shader cube model uniform buffer blocks
for (auto& cube : cubes) {
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&cube.uniformBuffer,
sizeof(glm::mat4)));
VK_CHECK_RESULT(cube.uniformBuffer.map());
}
updateUniformBuffers();
updateCubeUniformBuffers();
}
void updateUniformBuffers()
{
uboScene.projection = camera.matrices.perspective;
uboScene.view = camera.matrices.view;
memcpy(uniformBuffers.scene.mapped, &uboScene, sizeof(UboScene));
}
void updateCubeUniformBuffers()
{
cubes[0].modelMat = glm::translate(glm::mat4(1.0f), glm::vec3(-2.0f, 0.0f, 0.0f));
cubes[1].modelMat = glm::translate(glm::mat4(1.0f), glm::vec3( 1.5f, 0.5f, 0.0f));
for (auto& cube : cubes) {
cube.modelMat = glm::rotate(cube.modelMat, glm::radians(cube.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
cube.modelMat = glm::rotate(cube.modelMat, glm::radians(cube.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
cube.modelMat = glm::rotate(cube.modelMat, glm::radians(cube.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
cube.modelMat = glm::scale(cube.modelMat, glm::vec3(0.25f));
memcpy(cube.uniformBuffer.mapped, &cube.modelMat, sizeof(glm::mat4));
}
if (animate && !paused) {
cubes[0].rotation.x += 2.5f * frameTimer;
if (cubes[0].rotation.x > 360.0f)
cubes[0].rotation.x -= 360.0f;
cubes[1].rotation.y += 2.0f * frameTimer;
if (cubes[1].rotation.y > 360.0f)
cubes[1].rotation.y -= 360.0f;
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
/*
Extension specific functions
*/
// The push descriptor update function is part of an extension so it has to be manually loaded
vkCmdPushDescriptorSetKHR = (PFN_vkCmdPushDescriptorSetKHR)vkGetDeviceProcAddr(device, "vkCmdPushDescriptorSetKHR");
if (!vkCmdPushDescriptorSetKHR) {
vks::tools::exitFatal("Could not get a valid function pointer for vkCmdPushDescriptorSetKHR", -1);
}
// Get device push descriptor properties (to display them)
PFN_vkGetPhysicalDeviceProperties2KHR vkGetPhysicalDeviceProperties2KHR = reinterpret_cast<PFN_vkGetPhysicalDeviceProperties2KHR>(vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceProperties2KHR"));
if (!vkGetPhysicalDeviceProperties2KHR) {
vks::tools::exitFatal("Could not get a valid function pointer for vkGetPhysicalDeviceProperties2KHR", -1);
}
VkPhysicalDeviceProperties2KHR deviceProps2{};
pushDescriptorProps.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR;
deviceProps2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR;
deviceProps2.pNext = &pushDescriptorProps;
vkGetPhysicalDeviceProperties2KHR(physicalDevice, &deviceProps2);
/*
End of extension specific functions
*/
loadAssets();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (animate && !paused) {
updateCubeUniformBuffers();
}
if (camera.updated) {
updateUniformBuffers();
}
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
overlay->checkBox("Animate", &animate);
}
if (overlay->header("Device properties")) {
overlay->text("maxPushDescriptors: %d", pushDescriptorProps.maxPushDescriptors);
}
}
};
VULKAN_EXAMPLE_MAIN()