979 lines
No EOL
32 KiB
C++
979 lines
No EOL
32 KiB
C++
/*
|
|
* Vulkan Example - Rendering a scene with multiple meshes and materials
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <vector>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
#include <glm/gtc/type_ptr.hpp>
|
|
|
|
#include <vulkan/vulkan.h>
|
|
#include "vulkanexamplebase.h"
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
#define ENABLE_VALIDATION false
|
|
|
|
// Vertex layout used in this example
|
|
struct Vertex {
|
|
glm::vec3 pos;
|
|
glm::vec3 normal;
|
|
glm::vec2 uv;
|
|
glm::vec3 color;
|
|
};
|
|
|
|
// Scene related structs
|
|
|
|
// Shader properites for a material
|
|
// Will be passed to the shaders using push constant
|
|
struct SceneMaterialProperites
|
|
{
|
|
glm::vec4 ambient;
|
|
glm::vec4 diffuse;
|
|
glm::vec4 specular;
|
|
float opacity;
|
|
};
|
|
|
|
// Stores info on the materials used in the scene
|
|
struct SceneMaterial
|
|
{
|
|
std::string name;
|
|
// Material properties
|
|
SceneMaterialProperites properties;
|
|
// The example only uses a diffuse channel
|
|
vkTools::VulkanTexture diffuse;
|
|
// The material's descriptor contains the material descriptors
|
|
VkDescriptorSet descriptorSet;
|
|
// Pointer to the pipeline used by this material
|
|
VkPipeline *pipeline;
|
|
};
|
|
|
|
// Stores per-mesh Vulkan resources
|
|
struct SceneMesh
|
|
{
|
|
VkBuffer vertexBuffer;
|
|
VkDeviceMemory vertexMemory;
|
|
|
|
VkBuffer indexBuffer;
|
|
VkDeviceMemory indexMemory;
|
|
uint32_t indexCount;
|
|
|
|
//VkDescriptorSet descriptorSet;
|
|
|
|
// Pointer to the material used by this mesh
|
|
SceneMaterial *material;
|
|
};
|
|
|
|
// Class for loading the scene and generating all Vulkan resources
|
|
class Scene
|
|
{
|
|
private:
|
|
VkDevice device;
|
|
VkQueue queue;
|
|
|
|
VkDescriptorPool descriptorPool;
|
|
|
|
// We will be using separate descriptor sets (and bindings)
|
|
// for material and scene related uniforms
|
|
struct
|
|
{
|
|
VkDescriptorSetLayout material;
|
|
VkDescriptorSetLayout scene;
|
|
} descriptorSetLayouts;
|
|
|
|
VkDescriptorSet descriptorSetScene;
|
|
|
|
vkTools::VulkanTextureLoader *textureLoader;
|
|
|
|
const aiScene* aScene;
|
|
|
|
VkPhysicalDeviceMemoryProperties deviceMemProps;
|
|
uint32_t getMemoryTypeIndex(uint32_t typeBits, VkFlags properties)
|
|
{
|
|
for (int i = 0; i < 32; i++)
|
|
{
|
|
if ((typeBits & 1) == 1)
|
|
{
|
|
if ((deviceMemProps.memoryTypes[i].propertyFlags & properties) == properties)
|
|
{
|
|
return i;
|
|
}
|
|
}
|
|
typeBits >>= 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Get materials from the assimp scene and map to our scene structures
|
|
void loadMaterials()
|
|
{
|
|
materials.resize(aScene->mNumMaterials);
|
|
|
|
for (size_t i = 0; i < materials.size(); i++)
|
|
{
|
|
materials[i] = {};
|
|
|
|
aiString name;
|
|
aScene->mMaterials[i]->Get(AI_MATKEY_NAME, name);
|
|
|
|
// Properties
|
|
aiColor4D color;
|
|
aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_AMBIENT, color);
|
|
materials[i].properties.ambient = glm::make_vec4(&color.r) + glm::vec4(0.1f);
|
|
aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_DIFFUSE, color);
|
|
materials[i].properties.diffuse = glm::make_vec4(&color.r);
|
|
aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_SPECULAR, color);
|
|
materials[i].properties.specular = glm::make_vec4(&color.r);
|
|
aScene->mMaterials[i]->Get(AI_MATKEY_OPACITY, materials[i].properties.opacity);
|
|
|
|
if ((materials[i].properties.opacity) > 0.0f)
|
|
materials[i].properties.specular = glm::vec4(0.0f);
|
|
|
|
materials[i].name = name.C_Str();
|
|
std::cout << "Material \"" << materials[i].name << "\"" << std::endl;
|
|
|
|
// Textures
|
|
aiString texturefile;
|
|
// Diffuse
|
|
aScene->mMaterials[i]->GetTexture(aiTextureType_DIFFUSE, 0, &texturefile);
|
|
if (aScene->mMaterials[i]->GetTextureCount(aiTextureType_DIFFUSE) > 0)
|
|
{
|
|
std::cout << " Diffuse: \"" << texturefile.C_Str() << "\"" << std::endl;
|
|
std::string fileName = std::string(texturefile.C_Str());
|
|
std::replace(fileName.begin(), fileName.end(), '\\', '/');
|
|
textureLoader->loadTexture(assetPath + fileName, VK_FORMAT_BC3_UNORM_BLOCK, &materials[i].diffuse);
|
|
}
|
|
else
|
|
{
|
|
std::cout << " Material has no diffuse, using dummy texture!" << std::endl;
|
|
// todo : separate pipeline and layout
|
|
textureLoader->loadTexture(assetPath + "dummy.ktx", VK_FORMAT_BC2_UNORM_BLOCK, &materials[i].diffuse);
|
|
}
|
|
|
|
// For scenes with multiple textures per material we would need to check for additional texture types, e.g.:
|
|
// aiTextureType_HEIGHT, aiTextureType_OPACITY, aiTextureType_SPECULAR, etc.
|
|
|
|
// Assign pipeline
|
|
materials[i].pipeline = (materials[i].properties.opacity == 0.0f) ? &pipelines.solid : &pipelines.blending;
|
|
}
|
|
|
|
// Generate descriptor sets for the materials
|
|
|
|
// Descriptor pool
|
|
std::vector<VkDescriptorPoolSize> poolSizes;
|
|
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, static_cast<uint32_t>(materials.size())));
|
|
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(materials.size())));
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
|
vkTools::initializers::descriptorPoolCreateInfo(
|
|
static_cast<uint32_t>(poolSizes.size()),
|
|
poolSizes.data(),
|
|
static_cast<uint32_t>(materials.size()) + 1);
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
|
|
// Descriptor set and pipeline layouts
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout;
|
|
|
|
// Set 0: Scene matrices
|
|
setLayoutBindings.push_back(vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
0));
|
|
descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
static_cast<uint32_t>(setLayoutBindings.size()));
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.scene));
|
|
|
|
// Set 1: Material data
|
|
setLayoutBindings.clear();
|
|
setLayoutBindings.push_back(vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
0));
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.material));
|
|
|
|
// Setup pipeline layout
|
|
std::array<VkDescriptorSetLayout, 2> setLayouts = { descriptorSetLayouts.scene, descriptorSetLayouts.material };
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
|
|
|
|
// We will be using a push constant block to pass material properties to the fragment shaders
|
|
VkPushConstantRange pushConstantRange = vkTools::initializers::pushConstantRange(
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
sizeof(SceneMaterialProperites),
|
|
0);
|
|
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
|
|
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
|
|
// Material descriptor sets
|
|
for (size_t i = 0; i < materials.size(); i++)
|
|
{
|
|
// Descriptor set
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vkTools::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&descriptorSetLayouts.material,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &materials[i].descriptorSet));
|
|
|
|
VkDescriptorImageInfo texDescriptor =
|
|
vkTools::initializers::descriptorImageInfo(
|
|
materials[i].diffuse.sampler,
|
|
materials[i].diffuse.view,
|
|
VK_IMAGE_LAYOUT_GENERAL);
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
|
|
|
|
// todo : only use image sampler descriptor set and use one scene ubo for matrices
|
|
|
|
// Binding 0: Diffuse texture
|
|
writeDescriptorSets.push_back(vkTools::initializers::writeDescriptorSet(
|
|
materials[i].descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
0,
|
|
&texDescriptor));
|
|
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
// Scene descriptor set
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vkTools::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&descriptorSetLayouts.scene,
|
|
1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSetScene));
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
writeDescriptorSets.push_back(vkTools::initializers::writeDescriptorSet(
|
|
descriptorSetScene,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
0,
|
|
&uniformBuffer.descriptor));
|
|
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
// Load all meshes from the scene and generate the Vulkan resources
|
|
// for rendering them
|
|
void loadMeshes(VkCommandBuffer copyCmd)
|
|
{
|
|
meshes.resize(aScene->mNumMeshes);
|
|
for (uint32_t i = 0; i < meshes.size(); i++)
|
|
{
|
|
aiMesh *aMesh = aScene->mMeshes[i];
|
|
|
|
std::cout << "Mesh \"" << aMesh->mName.C_Str() << "\"" << std::endl;
|
|
std::cout << " Material: \"" << materials[aMesh->mMaterialIndex].name << "\"" << std::endl;
|
|
std::cout << " Faces: " << aMesh->mNumFaces << std::endl;
|
|
|
|
meshes[i].material = &materials[aMesh->mMaterialIndex];
|
|
|
|
// Vertices
|
|
std::vector<Vertex> vertices;
|
|
vertices.resize(aMesh->mNumVertices);
|
|
|
|
bool hasUV = aMesh->HasTextureCoords(0);
|
|
bool hasColor = aMesh->HasVertexColors(0);
|
|
bool hasNormals = aMesh->HasNormals();
|
|
|
|
for (uint32_t v = 0; v < aMesh->mNumVertices; v++)
|
|
{
|
|
vertices[v].pos = glm::make_vec3(&aMesh->mVertices[v].x);
|
|
vertices[v].pos.y = -vertices[v].pos.y;
|
|
vertices[v].uv = hasUV ? glm::make_vec2(&aMesh->mTextureCoords[0][v].x) : glm::vec2(0.0f);
|
|
vertices[v].normal = hasNormals ? glm::make_vec3(&aMesh->mNormals[v].x) : glm::vec3(0.0f);
|
|
vertices[v].normal.y = -vertices[v].normal.y;
|
|
vertices[v].color = hasColor ? glm::make_vec3(&aMesh->mColors[0][v].r) : glm::vec3(1.0f);
|
|
}
|
|
|
|
// Indices
|
|
std::vector<uint32_t> indices;
|
|
meshes[i].indexCount = aMesh->mNumFaces * 3;
|
|
indices.resize(aMesh->mNumFaces * 3);
|
|
for (uint32_t f = 0; f < aMesh->mNumFaces; f++)
|
|
{
|
|
memcpy(&indices[f*3], &aMesh->mFaces[f].mIndices[0], sizeof(uint32_t) * 3);
|
|
}
|
|
|
|
// Create buffers
|
|
// todo : only one memory allocation
|
|
|
|
uint32_t vertexDataSize = vertices.size() * sizeof(Vertex);
|
|
uint32_t indexDataSize = indices.size() * sizeof(uint32_t);
|
|
|
|
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
|
|
struct
|
|
{
|
|
struct {
|
|
VkDeviceMemory memory;
|
|
VkBuffer buffer;
|
|
} vBuffer;
|
|
struct {
|
|
VkDeviceMemory memory;
|
|
VkBuffer buffer;
|
|
} iBuffer;
|
|
} staging;
|
|
|
|
// Generate vertex buffer
|
|
VkBufferCreateInfo vBufferInfo;
|
|
void* data;
|
|
|
|
// Staging buffer
|
|
vBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, vertexDataSize);
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &vBufferInfo, nullptr, &staging.vBuffer.buffer));
|
|
vkGetBufferMemoryRequirements(device, staging.vBuffer.buffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &staging.vBuffer.memory));
|
|
VK_CHECK_RESULT(vkMapMemory(device, staging.vBuffer.memory, 0, VK_WHOLE_SIZE, 0, &data));
|
|
memcpy(data, vertices.data(), vertexDataSize);
|
|
vkUnmapMemory(device, staging.vBuffer.memory);
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, staging.vBuffer.buffer, staging.vBuffer.memory, 0));
|
|
|
|
// Target
|
|
vBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, vertexDataSize);
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &vBufferInfo, nullptr, &meshes[i].vertexBuffer));
|
|
vkGetBufferMemoryRequirements(device, meshes[i].vertexBuffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &meshes[i].vertexMemory));
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, meshes[i].vertexBuffer, meshes[i].vertexMemory, 0));
|
|
|
|
// Generate index buffer
|
|
VkBufferCreateInfo iBufferInfo;
|
|
|
|
// Staging buffer
|
|
iBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, indexDataSize);
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &iBufferInfo, nullptr, &staging.iBuffer.buffer));
|
|
vkGetBufferMemoryRequirements(device, staging.iBuffer.buffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &staging.iBuffer.memory));
|
|
VK_CHECK_RESULT(vkMapMemory(device, staging.iBuffer.memory, 0, VK_WHOLE_SIZE, 0, &data));
|
|
memcpy(data, indices.data(), indexDataSize);
|
|
vkUnmapMemory(device, staging.iBuffer.memory);
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, staging.iBuffer.buffer, staging.iBuffer.memory, 0));
|
|
|
|
// Target
|
|
iBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, indexDataSize);
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &iBufferInfo, nullptr, &meshes[i].indexBuffer));
|
|
vkGetBufferMemoryRequirements(device, meshes[i].indexBuffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &meshes[i].indexMemory));
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, meshes[i].indexBuffer, meshes[i].indexMemory, 0));
|
|
|
|
// Copy
|
|
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(copyCmd, &cmdBufInfo));
|
|
|
|
VkBufferCopy copyRegion = {};
|
|
|
|
copyRegion.size = vertexDataSize;
|
|
vkCmdCopyBuffer(
|
|
copyCmd,
|
|
staging.vBuffer.buffer,
|
|
meshes[i].vertexBuffer,
|
|
1,
|
|
©Region);
|
|
|
|
copyRegion.size = indexDataSize;
|
|
vkCmdCopyBuffer(
|
|
copyCmd,
|
|
staging.iBuffer.buffer,
|
|
meshes[i].indexBuffer,
|
|
1,
|
|
©Region);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(copyCmd));
|
|
|
|
VkSubmitInfo submitInfo = {};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = ©Cmd;
|
|
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
VK_CHECK_RESULT(vkQueueWaitIdle(queue));
|
|
|
|
vkDestroyBuffer(device, staging.vBuffer.buffer, nullptr);
|
|
vkFreeMemory(device, staging.vBuffer.memory, nullptr);
|
|
vkDestroyBuffer(device, staging.iBuffer.buffer, nullptr);
|
|
vkFreeMemory(device, staging.iBuffer.memory, nullptr);
|
|
}
|
|
}
|
|
|
|
public:
|
|
#if defined(__ANDROID__)
|
|
AAssetManager* assetManager = nullptr;
|
|
#endif
|
|
|
|
std::string assetPath = "";
|
|
|
|
std::vector<SceneMaterial> materials;
|
|
std::vector<SceneMesh> meshes;
|
|
|
|
// Shared ubo containing matrices used by all
|
|
// materials and meshes
|
|
vkTools::UniformData uniformBuffer;
|
|
struct {
|
|
glm::mat4 projection;
|
|
glm::mat4 view;
|
|
glm::mat4 model;
|
|
glm::vec4 lightPos = glm::vec4(1.25f, 8.35f, 0.0f, 0.0f);
|
|
} uniformData;
|
|
|
|
// Scene uses multiple pipelines
|
|
struct {
|
|
VkPipeline solid;
|
|
VkPipeline blending;
|
|
VkPipeline wireframe;
|
|
} pipelines;
|
|
|
|
// Shared pipeline layout
|
|
VkPipelineLayout pipelineLayout;
|
|
|
|
// For displaying only a single part of the scene
|
|
bool renderSingleScenePart = false;
|
|
uint32_t scenePartIndex = 0;
|
|
|
|
Scene(VkDevice device, VkQueue queue, VkPhysicalDeviceMemoryProperties memprops, vkTools::VulkanTextureLoader *textureloader)
|
|
{
|
|
this->device = device;
|
|
this->queue = queue;
|
|
this->deviceMemProps = memprops;
|
|
this->textureLoader = textureloader;
|
|
|
|
// Prepare uniform buffer for global matrices
|
|
VkMemoryRequirements memReqs;
|
|
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
|
|
VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uniformData));
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &uniformBuffer.buffer));
|
|
vkGetBufferMemoryRequirements(device, uniformBuffer.buffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &uniformBuffer.memory));
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, uniformBuffer.buffer, uniformBuffer.memory, 0));
|
|
VK_CHECK_RESULT(vkMapMemory(device, uniformBuffer.memory, 0, sizeof(uniformData), 0, (void **)&uniformBuffer.mapped));
|
|
uniformBuffer.descriptor.offset = 0;
|
|
uniformBuffer.descriptor.buffer = uniformBuffer.buffer;
|
|
uniformBuffer.descriptor.range = sizeof(uniformData);
|
|
}
|
|
|
|
~Scene()
|
|
{
|
|
for (auto mesh : meshes)
|
|
{
|
|
vkDestroyBuffer(device, mesh.vertexBuffer, nullptr);
|
|
vkFreeMemory(device, mesh.vertexMemory, nullptr);
|
|
vkDestroyBuffer(device, mesh.indexBuffer, nullptr);
|
|
vkFreeMemory(device, mesh.indexMemory, nullptr);
|
|
}
|
|
for (auto material : materials)
|
|
{
|
|
textureLoader->destroyTexture(material.diffuse);
|
|
}
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.material, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.scene, nullptr);
|
|
vkDestroyDescriptorPool(device, descriptorPool, nullptr);
|
|
vkDestroyPipeline(device, pipelines.solid, nullptr);
|
|
vkDestroyPipeline(device, pipelines.blending, nullptr);
|
|
vkDestroyPipeline(device, pipelines.wireframe, nullptr);
|
|
vkTools::destroyUniformData(device, &uniformBuffer);
|
|
}
|
|
|
|
void load(std::string filename, VkCommandBuffer copyCmd)
|
|
{
|
|
Assimp::Importer Importer;
|
|
|
|
int flags = aiProcess_PreTransformVertices | aiProcess_Triangulate | aiProcess_GenNormals;
|
|
|
|
#if defined(__ANDROID__)
|
|
AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
|
assert(asset);
|
|
size_t size = AAsset_getLength(asset);
|
|
assert(size > 0);
|
|
void *meshData = malloc(size);
|
|
AAsset_read(asset, meshData, size);
|
|
AAsset_close(asset);
|
|
aScene = Importer.ReadFileFromMemory(meshData, size, flags);
|
|
free(meshData);
|
|
#else
|
|
aScene = Importer.ReadFile(filename.c_str(), flags);
|
|
#endif
|
|
if (aScene)
|
|
{
|
|
loadMaterials();
|
|
loadMeshes(copyCmd);
|
|
}
|
|
else
|
|
{
|
|
printf("Error parsing '%s': '%s'\n", filename.c_str(), Importer.GetErrorString());
|
|
#if defined(__ANDROID__)
|
|
LOGE("Error parsing '%s': '%s'", filename.c_str(), Importer.GetErrorString());
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
// Renders the scene into an active command buffer
|
|
// In a real world application we would do some visibility culling in here
|
|
void render(VkCommandBuffer cmdBuffer, bool wireframe)
|
|
{
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
for (size_t i = 0; i < meshes.size(); i++)
|
|
{
|
|
if ((renderSingleScenePart) && (i != scenePartIndex))
|
|
continue;
|
|
|
|
//if (meshes[i].material->opacity == 0.0f)
|
|
// continue;
|
|
|
|
// todo : per material pipelines
|
|
// vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *mesh.material->pipeline);
|
|
|
|
// We will be using multiple descriptor sets for rendering
|
|
// In GLSL the selection is done via the set and binding keywords
|
|
// VS: layout (set = 0, binding = 0) uniform UBO;
|
|
// FS: layout (set = 1, binding = 0) uniform sampler2D samplerColorMap;
|
|
|
|
std::array<VkDescriptorSet, 2> descriptorSets;
|
|
// Set 0: Scene descriptor set containing global matrices
|
|
descriptorSets[0] = descriptorSetScene;
|
|
// Set 1: Per-Material descriptor set containing bound images
|
|
descriptorSets[1] = meshes[i].material->descriptorSet;
|
|
|
|
vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : *meshes[i].material->pipeline);
|
|
vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, static_cast<uint32_t>(descriptorSets.size()), descriptorSets.data(), 0, NULL);
|
|
|
|
// Pass material properies via push constants
|
|
vkCmdPushConstants(
|
|
cmdBuffer,
|
|
pipelineLayout,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
0,
|
|
sizeof(SceneMaterialProperites),
|
|
&meshes[i].material->properties);
|
|
|
|
vkCmdBindVertexBuffers(cmdBuffer, 0, 1, &meshes[i].vertexBuffer, offsets);
|
|
vkCmdBindIndexBuffer(cmdBuffer, meshes[i].indexBuffer, 0, VK_INDEX_TYPE_UINT32);
|
|
vkCmdDrawIndexed(cmdBuffer, meshes[i].indexCount, 1, 0, 0, 0);
|
|
}
|
|
|
|
// Render transparent objects last
|
|
|
|
}
|
|
};
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
bool wireframe = false;
|
|
bool attachLight = false;
|
|
|
|
Scene *scene = nullptr;
|
|
|
|
struct {
|
|
VkPipelineVertexInputStateCreateInfo inputState;
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
} vertices;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
rotationSpeed = 0.5f;
|
|
enableTextOverlay = true;
|
|
camera.type = Camera::CameraType::firstperson;
|
|
camera.movementSpeed = 7.5f;
|
|
camera.position = { 15.0f, -13.5f, 0.0f };
|
|
camera.setRotation(glm::vec3(5.0f, 90.0f, 0.0f));
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
|
title = "Vulkan Example - Scene rendering";
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
delete(scene);
|
|
}
|
|
|
|
void reBuildCommandBuffers()
|
|
{
|
|
if (!checkCommandBuffers())
|
|
{
|
|
destroyCommandBuffers();
|
|
createCommandBuffers();
|
|
}
|
|
buildCommandBuffers();
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f} };
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
scene->render(drawCmdBuffers[i], wireframe);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void setupVertexDescriptions()
|
|
{
|
|
// Binding description
|
|
vertices.bindingDescriptions.resize(1);
|
|
vertices.bindingDescriptions[0] =
|
|
vkTools::initializers::vertexInputBindingDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
sizeof(Vertex),
|
|
VK_VERTEX_INPUT_RATE_VERTEX);
|
|
|
|
// Attribute descriptions
|
|
// Describes memory layout and shader positions
|
|
vertices.attributeDescriptions.resize(4);
|
|
// Location 0 : Position
|
|
vertices.attributeDescriptions[0] =
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
0,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
0);
|
|
// Location 1 : Normal
|
|
vertices.attributeDescriptions[1] =
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
1,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
sizeof(float) * 3);
|
|
// Location 2 : Texture coordinates
|
|
vertices.attributeDescriptions[2] =
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
2,
|
|
VK_FORMAT_R32G32_SFLOAT,
|
|
sizeof(float) * 6);
|
|
// Location 3 : Color
|
|
vertices.attributeDescriptions[3] =
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
3,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
sizeof(float) * 8);
|
|
|
|
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
|
|
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
|
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
|
|
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
|
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
|
|
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
|
0,
|
|
VK_FALSE);
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
|
vkTools::initializers::pipelineRasterizationStateCreateInfo(
|
|
VK_POLYGON_MODE_FILL,
|
|
VK_CULL_MODE_BACK_BIT,
|
|
VK_FRONT_FACE_COUNTER_CLOCKWISE,
|
|
0);
|
|
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
|
vkTools::initializers::pipelineColorBlendAttachmentState(
|
|
0xf,
|
|
VK_FALSE);
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
|
vkTools::initializers::pipelineColorBlendStateCreateInfo(
|
|
1,
|
|
&blendAttachmentState);
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
|
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
|
|
VK_TRUE,
|
|
VK_TRUE,
|
|
VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState =
|
|
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampleState =
|
|
vkTools::initializers::pipelineMultisampleStateCreateInfo(
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
0);
|
|
|
|
std::vector<VkDynamicState> dynamicStateEnables = {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR
|
|
};
|
|
VkPipelineDynamicStateCreateInfo dynamicState =
|
|
vkTools::initializers::pipelineDynamicStateCreateInfo(
|
|
dynamicStateEnables.data(),
|
|
dynamicStateEnables.size(),
|
|
0);
|
|
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
// Solid rendering pipeline
|
|
shaderStages[0] = loadShader(getAssetPath() + "shaders/scenerendering/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getAssetPath() + "shaders/scenerendering/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
|
vkTools::initializers::pipelineCreateInfo(
|
|
scene->pipelineLayout,
|
|
renderPass,
|
|
0);
|
|
|
|
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = shaderStages.size();
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.solid));
|
|
|
|
// Alpha blended pipeline
|
|
rasterizationState.cullMode = VK_CULL_MODE_NONE;
|
|
blendAttachmentState.blendEnable = VK_TRUE;
|
|
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
|
|
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_COLOR;
|
|
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
|
|
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.blending));
|
|
|
|
// Wire frame rendering pipeline
|
|
rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
|
|
blendAttachmentState.blendEnable = VK_FALSE;
|
|
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
|
|
rasterizationState.lineWidth = 1.0f;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.wireframe));
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
if (attachLight)
|
|
{
|
|
scene->uniformData.lightPos = glm::vec4(-camera.position, 1.0f);
|
|
}
|
|
|
|
scene->uniformData.projection = camera.matrices.perspective;
|
|
scene->uniformData.view = camera.matrices.view;
|
|
scene->uniformData.model = glm::mat4();
|
|
|
|
memcpy(scene->uniformBuffer.mapped, &scene->uniformData, sizeof(scene->uniformData));
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
// Command buffer to be sumitted to the queue
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
|
|
// Submit to queue
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void loadScene()
|
|
{
|
|
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false);
|
|
scene = new Scene(device, queue, deviceMemoryProperties, textureLoader);
|
|
|
|
#if defined(__ANDROID__)
|
|
scene->assetManager = androidApp->activity->assetManager;
|
|
#endif
|
|
scene->assetPath = getAssetPath() + "models/sibenik/";
|
|
scene->load(getAssetPath() + "models/sibenik/sibenik.dae", copyCmd);
|
|
vkFreeCommandBuffers(device, cmdPool, 1, ©Cmd);
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
setupVertexDescriptions();
|
|
loadScene();
|
|
preparePipelines();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
}
|
|
|
|
virtual void viewChanged()
|
|
{
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
virtual void keyPressed(uint32_t keyCode)
|
|
{
|
|
switch (keyCode)
|
|
{
|
|
case 0x20:
|
|
case GAMEPAD_BUTTON_A:
|
|
wireframe = !wireframe;
|
|
reBuildCommandBuffers();
|
|
break;
|
|
case 0x50:
|
|
scene->renderSingleScenePart = !scene->renderSingleScenePart;
|
|
reBuildCommandBuffers();
|
|
updateTextOverlay();
|
|
break;
|
|
case 0x6B:
|
|
scene->scenePartIndex = (scene->scenePartIndex < static_cast<uint32_t>(scene->meshes.size())) ? scene->scenePartIndex + 1 : 0;
|
|
reBuildCommandBuffers();
|
|
updateTextOverlay();
|
|
break;
|
|
case 0x6D:
|
|
scene->scenePartIndex = (scene->scenePartIndex > 0) ? scene->scenePartIndex - 1 : static_cast<uint32_t>(scene->meshes.size()) - 1;
|
|
updateTextOverlay();
|
|
reBuildCommandBuffers();
|
|
break;
|
|
case 0x4C:
|
|
attachLight = !attachLight;
|
|
updateUniformBuffers();
|
|
break;
|
|
}
|
|
}
|
|
|
|
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
|
|
{
|
|
#if defined(__ANDROID__)
|
|
textOverlay->addText("Press \"Button A\" to toggle wireframe", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
|
|
#else
|
|
textOverlay->addText("Press \"w\" to toggle wireframe", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
|
|
if ((scene) && (scene->renderSingleScenePart))
|
|
{
|
|
textOverlay->addText("Rendering mesh " + std::to_string(scene->scenePartIndex + 1) + " of " + std::to_string(static_cast<uint32_t>(scene->meshes.size())) + "(\"p\" to toggle)", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
|
|
}
|
|
else
|
|
{
|
|
textOverlay->addText("Rendering whole scene (\"p\" to toggle)", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
|
|
}
|
|
#endif
|
|
}
|
|
};
|
|
|
|
VulkanExample *vulkanExample;
|
|
|
|
#if defined(_WIN32)
|
|
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
|
|
{
|
|
if (vulkanExample != NULL)
|
|
{
|
|
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
|
|
}
|
|
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
|
|
}
|
|
#elif defined(__linux__) && !defined(__ANDROID__)
|
|
static void handleEvent(const xcb_generic_event_t *event)
|
|
{
|
|
if (vulkanExample != NULL)
|
|
{
|
|
vulkanExample->handleEvent(event);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Main entry point
|
|
#if defined(_WIN32)
|
|
// Windows entry point
|
|
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
|
|
#elif defined(__ANDROID__)
|
|
// Android entry point
|
|
void android_main(android_app* state)
|
|
#elif defined(__linux__)
|
|
// Linux entry point
|
|
int main(const int argc, const char *argv[])
|
|
#endif
|
|
{
|
|
#if defined(__ANDROID__)
|
|
// Removing this may cause the compiler to omit the main entry point
|
|
// which would make the application crash at start
|
|
app_dummy();
|
|
#endif
|
|
vulkanExample = new VulkanExample();
|
|
#if defined(_WIN32)
|
|
vulkanExample->setupWindow(hInstance, WndProc);
|
|
#elif defined(__ANDROID__)
|
|
// Attach vulkan example to global android application state
|
|
state->userData = vulkanExample;
|
|
state->onAppCmd = VulkanExample::handleAppCommand;
|
|
state->onInputEvent = VulkanExample::handleAppInput;
|
|
vulkanExample->androidApp = state;
|
|
#elif defined(__linux__)
|
|
vulkanExample->setupWindow();
|
|
#endif
|
|
#if !defined(__ANDROID__)
|
|
vulkanExample->initSwapchain();
|
|
vulkanExample->prepare();
|
|
#endif
|
|
vulkanExample->renderLoop();
|
|
delete(vulkanExample);
|
|
#if !defined(__ANDROID__)
|
|
return 0;
|
|
#endif
|
|
} |