procedural-3d-engine/base/vulkanTextureLoader.hpp

771 lines
26 KiB
C++

/*
* Simple texture loader for Vulkan
*
* Note : No mip maps (yet), only uses optimal tiling (unless linear is forced)
*
* Copyright (C) 2015 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#pragma once
#include <vulkan/vulkan.h>
#include <gli/gli.hpp>
namespace vkTools
{
struct VulkanTexture
{
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
uint32_t layerCount;
};
class VulkanTextureLoader
{
private:
VkPhysicalDevice physicalDevice;
VkDevice device;
VkQueue queue;
VkCommandBuffer cmdBuffer;
VkCommandPool cmdPool;
VkPhysicalDeviceMemoryProperties deviceMemoryProperties;
// Try to find appropriate memory type for a memory allocation
VkBool32 getMemoryType(uint32_t typeBits, VkFlags properties, uint32_t *typeIndex)
{
for (int i = 0; i < 32; i++) {
if ((typeBits & 1) == 1) {
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
{
*typeIndex = i;
return true;
}
}
typeBits >>= 1;
}
return false;
}
public:
// Load a 2D texture
void loadTexture(const char* filename, VkFormat format, VulkanTexture *texture)
{
loadTexture(filename, format, texture, false);
}
// Load a 2D texture
void loadTexture(const char* filename, VkFormat format, VulkanTexture *texture, bool forceLinear)
{
gli::texture2D tex2D(gli::load(filename));
assert(!tex2D.empty());
texture->width = (uint32_t)tex2D[0].dimensions().x;
texture->height = (uint32_t)tex2D[0].dimensions().y;
VkResult err;
// Get device properites for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Only use linear tiling if requested (and supported by the device)
// Support for linear tiling is mostly limited, so prefer to use
// optimal tiling instead
// On most implementations linear tiling will only support a very
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
VkBool32 useStaging = true;
// Only use linear tiling if forced
if (forceLinear)
{
useStaging = formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT;
}
VkImageCreateInfo imageCreateInfo = {};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.pNext = NULL;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { texture->width, texture->height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = (useStaging) ? VK_IMAGE_USAGE_TRANSFER_SRC_BIT : VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.flags = 0;
VkMemoryAllocateInfo memAllocInfo = {};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAllocInfo.pNext = NULL;
memAllocInfo.allocationSize = 0;
memAllocInfo.memoryTypeIndex = 0;
VkImage mappableImage;
VkDeviceMemory mappableMemory;
// Create base image, if linear texturing is forced
// this can directly be used
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage);
assert(!err);
// Get memory requirements for this image
// like size and alignment
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
// Set memory allocation size to required memory size
memAllocInfo.allocationSize = memReqs.size;
// Get memory type that can be mapped to host memory
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
// Allocate host memory
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &(mappableMemory));
assert(!err);
// Bind allocated image for use
err = vkBindImageMemory(device, mappableImage, mappableMemory, 0);
assert(!err);
// Get sub resource layout
// Mip map count, array layer, etc.
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subRes.mipLevel = 0;
subRes.arrayLayer = 0;
VkSubresourceLayout subResLayout;
void *data;
// Get sub resources layout
// Includes row pitch, size offsets, etc.
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
// Map image memory
err = vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data);
assert(!err);
// Copy image data into memory
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
vkUnmapMemory(device, mappableMemory);
if (useStaging)
{
VkCommandBufferBeginInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufInfo.pNext = NULL;
err = vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo);
assert(!err);
// Setup texture as blit target with optimal tiling
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &texture->image);
assert(!err);
vkGetImageMemoryRequirements(device, texture->image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get device only memory type
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
// Allocate device memory
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &texture->deviceMemory);
assert(!err);
// Bind allocated image for use
err = vkBindImageMemory(device, texture->image, texture->deviceMemory, 0);
assert(!err);
// Image barrier for linear image (base)
// Linear image will be used as a source for the blit
setImageLayout(cmdBuffer,
mappableImage,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
// Image barrier for optimal image (target)
// Optimal image will be used as a target for the blit
setImageLayout(cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Copy region for image blit
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = 0;
copyRegion.dstSubresource.mipLevel = 0;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = texture->width;
copyRegion.extent.height = texture->height;
copyRegion.extent.depth = 1;
// Put image copy into command buffer
vkCmdCopyImage(cmdBuffer,
mappableImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
texture->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyRegion);
// Change texture image layout to shader read after the copy
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
setImageLayout(cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture->imageLayout);
err = vkEndCommandBuffer(cmdBuffer);
assert(!err);
VkFence nullFence = { VK_NULL_HANDLE };
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 0;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, nullFence);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
}
else
{
// Linear tiled images don't need to be staged
// and can be directly used as textures
texture->image = mappableImage;
texture->deviceMemory = mappableMemory;
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Setup image memory barrier
setImageLayout(cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
texture->imageLayout);
}
// Create sampler
// In Vulkan textures are accessed by samplers
// This separates all the sampling information from the
// texture data
// This means you could have multiple sampler objects
// for the same texture with different settings
// This is similar to the samplers available with OpenGL 3.3
VkSamplerCreateInfo sampler = {};
sampler.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &texture->sampler);
assert(!err);
// Create image view
// Textures are not directly accessed by the shaders and
// are abstracted by image views containing additional
// information and sub resource ranges
VkImageViewCreateInfo view = {};
view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.image = texture->image;
err = vkCreateImageView(device, &view, nullptr, &texture->view);
assert(!err);
if (useStaging)
{
vkDestroyImage(device, mappableImage, nullptr);
vkFreeMemory(device, mappableMemory, nullptr);
}
}
// Clean up vulkan resources used by a texture object
void destroyTexture(VulkanTexture texture)
{
vkDestroyImageView(device, texture.view, nullptr);
vkDestroyImage(device, texture.image, nullptr);
vkDestroySampler(device, texture.sampler, nullptr);
vkFreeMemory(device, texture.deviceMemory, nullptr);
}
VulkanTextureLoader(VkPhysicalDevice physicalDevice, VkDevice device, VkQueue queue, VkCommandPool cmdPool)
{
this->physicalDevice = physicalDevice;
this->device = device;
this->queue = queue;
this->cmdPool = cmdPool;
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &deviceMemoryProperties);
// Create command buffer for submitting image barriers
// and converting tilings
VkCommandBufferAllocateInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmdBufInfo.commandPool = cmdPool;
cmdBufInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmdBufInfo.commandBufferCount = 1;
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufInfo, &cmdBuffer);
assert(vkRes == VK_SUCCESS);
}
~VulkanTextureLoader()
{
vkFreeCommandBuffers(device, cmdPool, 1, &cmdBuffer);
}
// Load a cubemap texture (single file)
void loadCubemap(const char* filename, VkFormat format, VulkanTexture *texture)
{
VkFormatProperties formatProperties;
VkResult err;
gli::textureCube texCube(gli::load(filename));
assert(!texCube.empty());
texture->width = (uint32_t)texCube[0].dimensions().x;
texture->height = (uint32_t)texCube[0].dimensions().y;
// Get device properites for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { texture->width, texture->height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.flags = 0;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
struct {
VkImage image;
VkDeviceMemory memory;
} cubeFace[6];
VkCommandBufferBeginInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufInfo.pNext = NULL;
err = vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo);
assert(!err);
// Load separate cube map faces into linear tiled textures
for (uint32_t face = 0; face < 6; ++face)
{
err = vkCreateImage(device, &imageCreateInfo, nullptr, &cubeFace[face].image);
assert(!err);
vkGetImageMemoryRequirements(device, cubeFace[face].image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &cubeFace[face].memory);
assert(!err);
err = vkBindImageMemory(device, cubeFace[face].image, cubeFace[face].memory, 0);
assert(!err);
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
vkGetImageSubresourceLayout(device, cubeFace[face].image, &subRes, &subResLayout);
assert(!err);
err = vkMapMemory(device, cubeFace[face].memory, 0, memReqs.size, 0, &data);
assert(!err);
memcpy(data, texCube[face][subRes.mipLevel].data(), texCube[face][subRes.mipLevel].size());
vkUnmapMemory(device, cubeFace[face].memory);
// Image barrier for linear image (base)
// Linear image will be used as a source for the copy
setImageLayout(
cmdBuffer,
cubeFace[face].image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
// Transfer cube map faces to optimal tiling
// Setup texture as blit target with optimal tiling
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
imageCreateInfo.arrayLayers = 6;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &texture->image);
assert(!err);
vkGetImageMemoryRequirements(device, texture->image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &texture->deviceMemory);
assert(!err);
err = vkBindImageMemory(device, texture->image, texture->deviceMemory, 0);
assert(!err);
// Image barrier for optimal image (target)
// Optimal image will be used as destination for the copy
setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Copy cube map faces one by one
for (uint32_t face = 0; face < 6; ++face)
{
// Copy region for image blit
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = face;
copyRegion.dstSubresource.mipLevel = 0;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = texture->width;
copyRegion.extent.height = texture->height;
copyRegion.extent.depth = 1;
// Put image copy into command buffer
vkCmdCopyImage(
cmdBuffer,
cubeFace[face].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
texture->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyRegion);
// Change texture image layout to shader read after the copy
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture->imageLayout);
}
err = vkEndCommandBuffer(cmdBuffer);
assert(!err);
VkFence nullFence = { VK_NULL_HANDLE };
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 0;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, nullFence);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 8;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &texture->sampler);
assert(!err);
// Create image view
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = 6;
view.image = texture->image;
err = vkCreateImageView(device, &view, nullptr, &texture->view);
assert(!err);
// Cleanup
for (auto& face : cubeFace)
{
vkDestroyImage(device, face.image, nullptr);
vkFreeMemory(device, face.memory, nullptr);
}
}
// Load an array texture (single file)
void loadTextureArray(const char* filename, VkFormat format, VulkanTexture *texture)
{
VkFormatProperties formatProperties;
VkResult err;
gli::texture2DArray tex2DArray(gli::load(filename));
assert(!tex2DArray.empty());
texture->width = tex2DArray.dimensions().x;
texture->height = tex2DArray.dimensions().y;
texture->layerCount = tex2DArray.layers();
// Get device properites for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { texture->width, texture->height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.flags = 0;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
struct Layer {
VkImage image;
VkDeviceMemory memory;
};
std::vector<Layer> arrayLayer;
arrayLayer.resize(texture->layerCount);
// Allocate command buffer for image copies and layouts
VkCommandBuffer cmdBuffer;
VkCommandBufferAllocateInfo cmdBufAlllocatInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
err = vkAllocateCommandBuffers(device, &cmdBufAlllocatInfo, &cmdBuffer);
assert(!err);
VkCommandBufferBeginInfo cmdBufInfo =
vkTools::initializers::commandBufferBeginInfo();
err = vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo);
assert(!err);
// Load separate cube map faces into linear tiled textures
for (uint32_t i = 0; i < texture->layerCount; ++i)
{
err = vkCreateImage(device, &imageCreateInfo, nullptr, &arrayLayer[i].image);
assert(!err);
vkGetImageMemoryRequirements(device, arrayLayer[i].image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &arrayLayer[i].memory);
assert(!err);
err = vkBindImageMemory(device, arrayLayer[i].image, arrayLayer[i].memory, 0);
assert(!err);
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
vkGetImageSubresourceLayout(device, arrayLayer[i].image, &subRes, &subResLayout);
assert(!err);
err = vkMapMemory(device, arrayLayer[i].memory, 0, memReqs.size, 0, &data);
assert(!err);
memcpy(data, tex2DArray[i].data(), tex2DArray[i].size());
vkUnmapMemory(device, arrayLayer[i].memory);
// Image barrier for linear image (base)
// Linear image will be used as a source for the copy
vkTools::setImageLayout(
cmdBuffer,
arrayLayer[i].image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
// Transfer cube map faces to optimal tiling
// Setup texture as blit target with optimal tiling
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.arrayLayers = texture->layerCount;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &texture->image);
assert(!err);
vkGetImageMemoryRequirements(device, texture->image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &texture->deviceMemory);
assert(!err);
err = vkBindImageMemory(device, texture->image, texture->deviceMemory, 0);
assert(!err);
// Image barrier for optimal image (target)
// Optimal image will be used as destination for the copy
vkTools::setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Copy cube map faces one by one
for (uint32_t i = 0; i < texture->layerCount; ++i)
{
// Copy region for image blit
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = i;
copyRegion.dstSubresource.mipLevel = 0;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = texture->width;
copyRegion.extent.height = texture->height;
copyRegion.extent.depth = 1;
// Put image copy into command buffer
vkCmdCopyImage(
cmdBuffer,
arrayLayer[i].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
texture->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyRegion);
// Change texture image layout to shader read after the copy
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture->imageLayout);
}
err = vkEndCommandBuffer(cmdBuffer);
assert(!err);
VkFence nullFence = { VK_NULL_HANDLE };
// Submit command buffer to graphis queue
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, nullFence);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 8;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &texture->sampler);
assert(!err);
// Create image view
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = texture->layerCount;
view.image = texture->image;
err = vkCreateImageView(device, &view, nullptr, &texture->view);
assert(!err);
// Cleanup
for (auto& layer : arrayLayer)
{
vkDestroyImage(device, layer.image, nullptr);
vkFreeMemory(device, layer.memory, nullptr);
}
}
};
};