procedural-3d-engine/gears/vulkangear.cpp
2016-02-16 15:07:25 +01:00

319 lines
12 KiB
C++

/*
* Vulkan Example - Animated gears using multiple uniform buffers
*
* See readme.md for details
*
* Copyright (C) 2015 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkangear.h"
int32_t VulkanGear::newVertex(std::vector<Vertex> *vBuffer, float x, float y, float z, const glm::vec3& normal)
{
Vertex v(
glm::vec3(x, y, z),
normal,
color
);
vBuffer->push_back(v);
return vBuffer->size() - 1;
}
void VulkanGear::newFace(std::vector<uint32_t> *iBuffer, int a, int b, int c)
{
iBuffer->push_back(a);
iBuffer->push_back(b);
iBuffer->push_back(c);
}
VulkanGear::VulkanGear(VkDevice device, VulkanExampleBase *example)
{
this->device = device;
this->exampleBase = example;
}
VulkanGear::~VulkanGear()
{
// Clean up vulkan resources
vkDestroyBuffer(device, uniformData.buffer, nullptr);
vkFreeMemory(device, uniformData.memory, nullptr);
vkDestroyBuffer(device, vertexBuffer.buf, nullptr);
vkFreeMemory(device, vertexBuffer.mem, nullptr);
vkDestroyBuffer(device, indexBuffer.buf, nullptr);
vkFreeMemory(device, indexBuffer.mem, nullptr);
}
void VulkanGear::generate(float inner_radius, float outer_radius, float width, int teeth, float tooth_depth, glm::vec3 color, glm::vec3 pos, float rotSpeed, float rotOffset)
{
this->color = color;
this->pos = pos;
this->rotOffset = rotOffset;
this->rotSpeed = rotSpeed;
std::vector<Vertex> vBuffer;
std::vector<uint32_t> iBuffer;
int i, j;
float r0, r1, r2;
float ta, da;
float u1, v1, u2, v2, len;
float cos_ta, cos_ta_1da, cos_ta_2da, cos_ta_3da, cos_ta_4da;
float sin_ta, sin_ta_1da, sin_ta_2da, sin_ta_3da, sin_ta_4da;
int32_t ix0, ix1, ix2, ix3, ix4, ix5;
r0 = inner_radius;
r1 = outer_radius - tooth_depth / 2.0;
r2 = outer_radius + tooth_depth / 2.0;
da = 2.0 * M_PI / teeth / 4.0;
glm::vec3 normal;
for (i = 0; i < teeth; i++)
{
ta = i * 2.0 * M_PI / teeth;
// todo : naming
cos_ta = cos(ta);
cos_ta_1da = cos(ta + da);
cos_ta_2da = cos(ta + 2 * da);
cos_ta_3da = cos(ta + 3 * da);
cos_ta_4da = cos(ta + 4 * da);
sin_ta = sin(ta);
sin_ta_1da = sin(ta + da);
sin_ta_2da = sin(ta + 2 * da);
sin_ta_3da = sin(ta + 3 * da);
sin_ta_4da = sin(ta + 4 * da);
u1 = r2 * cos_ta_1da - r1 * cos_ta;
v1 = r2 * sin_ta_1da - r1 * sin_ta;
len = sqrt(u1 * u1 + v1 * v1);
u1 /= len;
v1 /= len;
u2 = r1 * cos_ta_3da - r2 * cos_ta_2da;
v2 = r1 * sin_ta_3da - r2 * sin_ta_2da;
// front face
normal = glm::vec3(0.0, 0.0, 1.0);
ix0 = newVertex(&vBuffer, r0 * cos_ta, r0 * sin_ta, width * 0.5, normal);
ix1 = newVertex(&vBuffer, r1 * cos_ta, r1 * sin_ta, width * 0.5, normal);
ix2 = newVertex(&vBuffer, r0 * cos_ta, r0 * sin_ta, width * 0.5, normal);
ix3 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, width * 0.5, normal);
ix4 = newVertex(&vBuffer, r0 * cos_ta_4da, r0 * sin_ta_4da, width * 0.5, normal);
ix5 = newVertex(&vBuffer, r1 * cos_ta_4da, r1 * sin_ta_4da, width * 0.5, normal);
newFace(&iBuffer, ix0, ix1, ix2);
newFace(&iBuffer, ix1, ix3, ix2);
newFace(&iBuffer, ix2, ix3, ix4);
newFace(&iBuffer, ix3, ix5, ix4);
// front sides of teeth
normal = glm::vec3(0.0, 0.0, 1.0);
ix0 = newVertex(&vBuffer, r1 * cos_ta, r1 * sin_ta, width * 0.5, normal);
ix1 = newVertex(&vBuffer, r2 * cos_ta_1da, r2 * sin_ta_1da, width * 0.5, normal);
ix2 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, width * 0.5, normal);
ix3 = newVertex(&vBuffer, r2 * cos_ta_2da, r2 * sin_ta_2da, width * 0.5, normal);
newFace(&iBuffer, ix0, ix1, ix2);
newFace(&iBuffer, ix1, ix3, ix2);
// back face
normal = glm::vec3(0.0, 0.0, -1.0);
ix0 = newVertex(&vBuffer, r1 * cos_ta, r1 * sin_ta, -width * 0.5, normal);
ix1 = newVertex(&vBuffer, r0 * cos_ta, r0 * sin_ta, -width * 0.5, normal);
ix2 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, -width * 0.5, normal);
ix3 = newVertex(&vBuffer, r0 * cos_ta, r0 * sin_ta, -width * 0.5, normal);
ix4 = newVertex(&vBuffer, r1 * cos_ta_4da, r1 * sin_ta_4da, -width * 0.5, normal);
ix5 = newVertex(&vBuffer, r0 * cos_ta_4da, r0 * sin_ta_4da, -width * 0.5, normal);
newFace(&iBuffer, ix0, ix1, ix2);
newFace(&iBuffer, ix1, ix3, ix2);
newFace(&iBuffer, ix2, ix3, ix4);
newFace(&iBuffer, ix3, ix5, ix4);
// back sides of teeth
normal = glm::vec3(0.0, 0.0, -1.0);
ix0 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, -width * 0.5, normal);
ix1 = newVertex(&vBuffer, r2 * cos_ta_2da, r2 * sin_ta_2da, -width * 0.5, normal);
ix2 = newVertex(&vBuffer, r1 * cos_ta, r1 * sin_ta, -width * 0.5, normal);
ix3 = newVertex(&vBuffer, r2 * cos_ta_1da, r2 * sin_ta_1da, -width * 0.5, normal);
newFace(&iBuffer, ix0, ix1, ix2);
newFace(&iBuffer, ix1, ix3, ix2);
// draw outward faces of teeth
normal = glm::vec3(v1, -u1, 0.0);
ix0 = newVertex(&vBuffer, r1 * cos_ta, r1 * sin_ta, width * 0.5, normal);
ix1 = newVertex(&vBuffer, r1 * cos_ta, r1 * sin_ta, -width * 0.5, normal);
ix2 = newVertex(&vBuffer, r2 * cos_ta_1da, r2 * sin_ta_1da, width * 0.5, normal);
ix3 = newVertex(&vBuffer, r2 * cos_ta_1da, r2 * sin_ta_1da, -width * 0.5, normal);
newFace(&iBuffer, ix0, ix1, ix2);
newFace(&iBuffer, ix1, ix3, ix2);
normal = glm::vec3(cos_ta, sin_ta, 0.0);
ix0 = newVertex(&vBuffer, r2 * cos_ta_1da, r2 * sin_ta_1da, width * 0.5, normal);
ix1 = newVertex(&vBuffer, r2 * cos_ta_1da, r2 * sin_ta_1da, -width * 0.5, normal);
ix2 = newVertex(&vBuffer, r2 * cos_ta_2da, r2 * sin_ta_2da, width * 0.5, normal);
ix3 = newVertex(&vBuffer, r2 * cos_ta_2da, r2 * sin_ta_2da, -width * 0.5, normal);
newFace(&iBuffer, ix0, ix1, ix2);
newFace(&iBuffer, ix1, ix3, ix2);
normal = glm::vec3(v2, -u2, 0.0);
ix0 = newVertex(&vBuffer, r2 * cos_ta_2da, r2 * sin_ta_2da, width * 0.5, normal);
ix1 = newVertex(&vBuffer, r2 * cos_ta_2da, r2 * sin_ta_2da, -width * 0.5, normal);
ix2 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, width * 0.5, normal);
ix3 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, -width * 0.5, normal);
newFace(&iBuffer, ix0, ix1, ix2);
newFace(&iBuffer, ix1, ix3, ix2);
normal = glm::vec3(cos_ta, sin_ta, 0.0);
ix0 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, width * 0.5, normal);
ix1 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, -width * 0.5, normal);
ix2 = newVertex(&vBuffer, r1 * cos_ta_4da, r1 * sin_ta_4da, width * 0.5, normal);
ix3 = newVertex(&vBuffer, r1 * cos_ta_4da, r1 * sin_ta_4da, -width * 0.5, normal);
newFace(&iBuffer, ix0, ix1, ix2);
newFace(&iBuffer, ix1, ix3, ix2);
// draw inside radius cylinder
ix0 = newVertex(&vBuffer, r0 * cos_ta, r0 * sin_ta, -width * 0.5, glm::vec3(-cos_ta, -sin_ta, 0.0));
ix1 = newVertex(&vBuffer, r0 * cos_ta, r0 * sin_ta, width * 0.5, glm::vec3(-cos_ta, -sin_ta, 0.0));
ix2 = newVertex(&vBuffer, r0 * cos_ta_4da, r0 * sin_ta_4da, -width * 0.5, glm::vec3(-cos_ta_4da, -sin_ta_4da, 0.0));
ix3 = newVertex(&vBuffer, r0 * cos_ta_4da, r0 * sin_ta_4da, width * 0.5, glm::vec3(-cos_ta_4da, -sin_ta_4da, 0.0));
newFace(&iBuffer, ix0, ix1, ix2);
newFace(&iBuffer, ix1, ix3, ix2);
}
int vertexBufferSize = vBuffer.size() * sizeof(Vertex);
int indexBufferSize = iBuffer.size() * sizeof(uint32_t);
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkResult err;
void *data;
// Generate vertex buffer
VkBufferCreateInfo vBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBufferSize);
err = vkCreateBuffer(device, &vBufferInfo, nullptr, &vertexBuffer.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, vertexBuffer.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
exampleBase->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &vertexBuffer.mem);
assert(!err);
err = vkMapMemory(device, vertexBuffer.mem, 0, vertexBufferSize, 0, &data);
assert(!err);
memcpy(data, vBuffer.data(), vertexBufferSize);
vkUnmapMemory(device, vertexBuffer.mem);
err = vkBindBufferMemory(device, vertexBuffer.buf, vertexBuffer.mem, 0);
assert(!err);
// Generate index buffer
VkBufferCreateInfo iBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBufferSize);
err = vkCreateBuffer(device, &iBufferInfo, nullptr, &indexBuffer.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, indexBuffer.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
exampleBase->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &indexBuffer.mem);
assert(!err);
err = vkMapMemory(device, indexBuffer.mem, 0, indexBufferSize, 0, &data);
assert(!err);
memcpy(data, iBuffer.data(), indexBufferSize);
vkUnmapMemory(device, indexBuffer.mem);
err = vkBindBufferMemory(device, indexBuffer.buf, indexBuffer.mem, 0);
assert(!err);
indexBuffer.count = iBuffer.size();
prepareUniformBuffer();
}
void VulkanGear::draw(VkCommandBuffer cmdbuffer, VkPipelineLayout pipelineLayout)
{
VkDeviceSize offsets[1] = { 0 };
vkCmdBindDescriptorSets(cmdbuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindVertexBuffers(cmdbuffer, 0, 1, &vertexBuffer.buf, offsets);
vkCmdBindIndexBuffer(cmdbuffer, indexBuffer.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(cmdbuffer, indexBuffer.count, 1, 0, 0, 1);
}
void VulkanGear::updateUniformBuffer(glm::mat4 perspective, glm::vec3 rotation, float zoom, float timer)
{
ubo.projection = perspective;
ubo.view = glm::lookAt(
glm::vec3(0, 0, -zoom),
glm::vec3(-1.0, -1.5, 0),
glm::vec3(0, 1, 0)
);
ubo.view = glm::rotate(ubo.view, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
ubo.view = glm::rotate(ubo.view, deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
ubo.model = glm::mat4();
ubo.model = glm::translate(ubo.model, pos);
rotation.z = (rotSpeed * timer) + rotOffset;
ubo.model = glm::rotate(ubo.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
ubo.normal = glm::inverseTranspose(ubo.view * ubo.model);
//ubo.lightPos = lightPos;
ubo.lightPos = glm::vec3(0.0f, 0.0f, 2.5f);
ubo.lightPos.x = sin(deg_to_rad(timer)) * 8.0f;
ubo.lightPos.z = cos(deg_to_rad(timer)) * 8.0f;
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.memory, 0, sizeof(ubo), 0, (void **)&pData);
assert(!err);
memcpy(pData, &ubo, sizeof(ubo));
vkUnmapMemory(device, uniformData.memory);
#undef deg_to_rad
}
void VulkanGear::setupDescriptorSet(VkDescriptorPool pool, VkDescriptorSetLayout descriptorSetLayout)
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
pool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
// Binding 0 : Vertex shader uniform buffer
VkWriteDescriptorSet writeDescriptorSet =
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, NULL);
}
void VulkanGear::prepareUniformBuffer()
{
VkResult err;
// Vertex shader uniform buffer block
VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkBufferCreateInfo bufferInfo = vkTools::initializers::bufferCreateInfo(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(ubo));
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformData.buffer);
assert(!err);
vkGetBufferMemoryRequirements(device, uniformData.buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
exampleBase->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &allocInfo, nullptr, &uniformData.memory);
assert(!err);
err = vkBindBufferMemory(device, uniformData.buffer, uniformData.memory, 0);
assert(!err);
uniformData.descriptor.buffer = uniformData.buffer;
uniformData.descriptor.offset = 0;
uniformData.descriptor.range = sizeof(ubo);
uniformData.allocSize = allocInfo.allocationSize;
}