683 lines
31 KiB
C++
683 lines
31 KiB
C++
/*
|
|
* Vulkan Example - Texture loading (and display) example (including mip maps)
|
|
*
|
|
* This sample shows how to upload a 2D texture to the device and how to display it. In Vulkan this is done using images, views and samplers.
|
|
*
|
|
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include "vulkanexamplebase.h"
|
|
#include <ktx.h>
|
|
#include <ktxvulkan.h>
|
|
|
|
// Vertex layout for this example
|
|
struct Vertex {
|
|
float pos[3];
|
|
float uv[2];
|
|
float normal[3];
|
|
};
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
// Contains all Vulkan objects that are required to store and use a texture
|
|
// Note that this repository contains a texture class (VulkanTexture.hpp) that encapsulates texture loading functionality in a class that is used in subsequent demos
|
|
struct Texture {
|
|
VkSampler sampler{ VK_NULL_HANDLE };
|
|
VkImage image{ VK_NULL_HANDLE };
|
|
VkImageLayout imageLayout;
|
|
VkDeviceMemory deviceMemory{ VK_NULL_HANDLE };
|
|
VkImageView view{ VK_NULL_HANDLE };
|
|
uint32_t width{ 0 };
|
|
uint32_t height{ 0 };
|
|
uint32_t mipLevels{ 0 };
|
|
} texture;
|
|
|
|
vks::Buffer vertexBuffer;
|
|
vks::Buffer indexBuffer;
|
|
uint32_t indexCount{ 0 };
|
|
|
|
struct UniformData {
|
|
glm::mat4 projection;
|
|
glm::mat4 modelView;
|
|
glm::vec4 viewPos;
|
|
// This is used to change the bias for the level-of-detail (mips) in the fragment shader
|
|
float lodBias = 0.0f;
|
|
} uniformData;
|
|
vks::Buffer uniformBuffer;
|
|
|
|
VkPipeline pipeline{ VK_NULL_HANDLE };
|
|
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
|
|
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
|
|
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
|
|
|
|
VulkanExample() : VulkanExampleBase()
|
|
{
|
|
title = "Texture loading";
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f));
|
|
camera.setRotation(glm::vec3(0.0f, 15.0f, 0.0f));
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
if (device) {
|
|
destroyTextureImage(texture);
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
vertexBuffer.destroy();
|
|
indexBuffer.destroy();
|
|
uniformBuffer.destroy();
|
|
}
|
|
}
|
|
|
|
// Enable physical device features required for this example
|
|
virtual void getEnabledFeatures()
|
|
{
|
|
// Enable anisotropic filtering if supported
|
|
if (deviceFeatures.samplerAnisotropy) {
|
|
enabledFeatures.samplerAnisotropy = VK_TRUE;
|
|
};
|
|
}
|
|
|
|
/*
|
|
Upload texture image data to the GPU
|
|
|
|
Vulkan offers two types of image tiling (memory layout):
|
|
|
|
Linear tiled images:
|
|
These are stored as is and can be copied directly to. But due to the linear nature they're not a good match for GPUs and format and feature support is very limited.
|
|
It's not advised to use linear tiled images for anything else than copying from host to GPU if buffer copies are not an option.
|
|
Linear tiling is thus only implemented for learning purposes, one should always prefer optimal tiled image.
|
|
|
|
Optimal tiled images:
|
|
These are stored in an implementation specific layout matching the capability of the hardware. They usually support more formats and features and are much faster.
|
|
Optimal tiled images are stored on the device and not accessible by the host. So they can't be written directly to (like liner tiled images) and always require
|
|
some sort of data copy, either from a buffer or a linear tiled image.
|
|
|
|
In Short: Always use optimal tiled images for rendering.
|
|
*/
|
|
void loadTexture()
|
|
{
|
|
// We use the Khronos texture format (https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/)
|
|
std::string filename = getAssetPath() + "textures/metalplate01_rgba.ktx";
|
|
// Texture data contains 4 channels (RGBA) with unnormalized 8-bit values, this is the most commonly supported format
|
|
VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
|
|
|
|
ktxResult result;
|
|
ktxTexture* ktxTexture;
|
|
|
|
#if defined(__ANDROID__)
|
|
// Textures are stored inside the apk on Android (compressed)
|
|
// So they need to be loaded via the asset manager
|
|
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
|
if (!asset) {
|
|
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
|
|
}
|
|
size_t size = AAsset_getLength(asset);
|
|
assert(size > 0);
|
|
|
|
ktx_uint8_t *textureData = new ktx_uint8_t[size];
|
|
AAsset_read(asset, textureData, size);
|
|
AAsset_close(asset);
|
|
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
|
|
delete[] textureData;
|
|
#else
|
|
if (!vks::tools::fileExists(filename)) {
|
|
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
|
|
}
|
|
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
|
|
#endif
|
|
assert(result == KTX_SUCCESS);
|
|
|
|
// Get properties required for using and upload texture data from the ktx texture object
|
|
texture.width = ktxTexture->baseWidth;
|
|
texture.height = ktxTexture->baseHeight;
|
|
texture.mipLevels = ktxTexture->numLevels;
|
|
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
|
|
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
|
|
|
|
// We prefer using staging to copy the texture data to a device local optimal image
|
|
VkBool32 useStaging = true;
|
|
|
|
// Only use linear tiling if forced
|
|
bool forceLinearTiling = false;
|
|
if (forceLinearTiling) {
|
|
// Don't use linear if format is not supported for (linear) shader sampling
|
|
// Get device properties for the requested texture format
|
|
VkFormatProperties formatProperties;
|
|
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
|
|
useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
|
|
}
|
|
|
|
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs = {};
|
|
|
|
if (useStaging) {
|
|
// Copy data to an optimal tiled image
|
|
// This loads the texture data into a host local buffer that is copied to the optimal tiled image on the device
|
|
|
|
// Create a host-visible staging buffer that contains the raw image data
|
|
// This buffer will be the data source for copying texture data to the optimal tiled image on the device
|
|
VkBuffer stagingBuffer;
|
|
VkDeviceMemory stagingMemory;
|
|
|
|
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
|
|
bufferCreateInfo.size = ktxTextureSize;
|
|
// This buffer is used as a transfer source for the buffer copy
|
|
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
|
|
|
|
// Get memory requirements for the staging buffer (alignment, memory type bits)
|
|
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
// Get memory type index for a host visible buffer
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
|
|
|
|
// Copy texture data into host local staging buffer
|
|
uint8_t *data;
|
|
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
|
|
memcpy(data, ktxTextureData, ktxTextureSize);
|
|
vkUnmapMemory(device, stagingMemory);
|
|
|
|
// Setup buffer copy regions for each mip level
|
|
std::vector<VkBufferImageCopy> bufferCopyRegions;
|
|
uint32_t offset = 0;
|
|
|
|
for (uint32_t i = 0; i < texture.mipLevels; i++) {
|
|
// Calculate offset into staging buffer for the current mip level
|
|
ktx_size_t offset;
|
|
KTX_error_code ret = ktxTexture_GetImageOffset(ktxTexture, i, 0, 0, &offset);
|
|
assert(ret == KTX_SUCCESS);
|
|
// Setup a buffer image copy structure for the current mip level
|
|
VkBufferImageCopy bufferCopyRegion = {};
|
|
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
bufferCopyRegion.imageSubresource.mipLevel = i;
|
|
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
|
|
bufferCopyRegion.imageSubresource.layerCount = 1;
|
|
bufferCopyRegion.imageExtent.width = ktxTexture->baseWidth >> i;
|
|
bufferCopyRegion.imageExtent.height = ktxTexture->baseHeight >> i;
|
|
bufferCopyRegion.imageExtent.depth = 1;
|
|
bufferCopyRegion.bufferOffset = offset;
|
|
bufferCopyRegions.push_back(bufferCopyRegion);
|
|
}
|
|
|
|
// Create optimal tiled target image on the device
|
|
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCreateInfo.format = format;
|
|
imageCreateInfo.mipLevels = texture.mipLevels;
|
|
imageCreateInfo.arrayLayers = 1;
|
|
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
// Set initial layout of the image to undefined
|
|
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
|
|
|
|
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
|
|
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
|
|
// Image memory barriers for the texture image
|
|
|
|
// The sub resource range describes the regions of the image that will be transitioned using the memory barriers below
|
|
VkImageSubresourceRange subresourceRange = {};
|
|
// Image only contains color data
|
|
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
// Start at first mip level
|
|
subresourceRange.baseMipLevel = 0;
|
|
// We will transition on all mip levels
|
|
subresourceRange.levelCount = texture.mipLevels;
|
|
// The 2D texture only has one layer
|
|
subresourceRange.layerCount = 1;
|
|
|
|
// Transition the texture image layout to transfer target, so we can safely copy our buffer data to it.
|
|
VkImageMemoryBarrier imageMemoryBarrier = vks::initializers::imageMemoryBarrier();;
|
|
imageMemoryBarrier.image = texture.image;
|
|
imageMemoryBarrier.subresourceRange = subresourceRange;
|
|
imageMemoryBarrier.srcAccessMask = 0;
|
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
|
|
|
|
// Insert a memory dependency at the proper pipeline stages that will execute the image layout transition
|
|
// Source pipeline stage is host write/read execution (VK_PIPELINE_STAGE_HOST_BIT)
|
|
// Destination pipeline stage is copy command execution (VK_PIPELINE_STAGE_TRANSFER_BIT)
|
|
vkCmdPipelineBarrier(
|
|
copyCmd,
|
|
VK_PIPELINE_STAGE_HOST_BIT,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
0,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
|
|
// Copy mip levels from staging buffer
|
|
vkCmdCopyBufferToImage(
|
|
copyCmd,
|
|
stagingBuffer,
|
|
texture.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
static_cast<uint32_t>(bufferCopyRegions.size()),
|
|
bufferCopyRegions.data());
|
|
|
|
// Once the data has been uploaded we transfer to the texture image to the shader read layout, so it can be sampled from
|
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
|
|
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
|
|
// Insert a memory dependency at the proper pipeline stages that will execute the image layout transition
|
|
// Source pipeline stage is copy command execution (VK_PIPELINE_STAGE_TRANSFER_BIT)
|
|
// Destination pipeline stage fragment shader access (VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT)
|
|
vkCmdPipelineBarrier(
|
|
copyCmd,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
0,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
|
|
// Store current layout for later reuse
|
|
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
|
|
|
// Clean up staging resources
|
|
vkFreeMemory(device, stagingMemory, nullptr);
|
|
vkDestroyBuffer(device, stagingBuffer, nullptr);
|
|
} else {
|
|
// Copy data to a linear tiled image
|
|
|
|
VkImage mappableImage;
|
|
VkDeviceMemory mappableMemory;
|
|
|
|
// Load mip map level 0 to linear tiling image
|
|
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCreateInfo.format = format;
|
|
imageCreateInfo.mipLevels = 1;
|
|
imageCreateInfo.arrayLayers = 1;
|
|
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
|
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage));
|
|
|
|
// Get memory requirements for this image like size and alignment
|
|
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
|
|
// Set memory allocation size to required memory size
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
// Get memory type that can be mapped to host memory
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, mappableImage, mappableMemory, 0));
|
|
|
|
// Map image memory
|
|
void *data;
|
|
VK_CHECK_RESULT(vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data));
|
|
// Copy image data of the first mip level into memory
|
|
memcpy(data, ktxTextureData, memReqs.size);
|
|
vkUnmapMemory(device, mappableMemory);
|
|
|
|
// Linear tiled images don't need to be staged and can be directly used as textures
|
|
texture.image = mappableImage;
|
|
texture.deviceMemory = mappableMemory;
|
|
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
|
|
// Setup image memory barrier transfer image to shader read layout
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
|
|
// The sub resource range describes the regions of the image we will be transition
|
|
VkImageSubresourceRange subresourceRange = {};
|
|
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
subresourceRange.baseMipLevel = 0;
|
|
subresourceRange.levelCount = 1;
|
|
subresourceRange.layerCount = 1;
|
|
|
|
// Transition the texture image layout to shader read, so it can be sampled from
|
|
VkImageMemoryBarrier imageMemoryBarrier = vks::initializers::imageMemoryBarrier();;
|
|
imageMemoryBarrier.image = texture.image;
|
|
imageMemoryBarrier.subresourceRange = subresourceRange;
|
|
imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
|
|
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
|
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
|
|
// Insert a memory dependency at the proper pipeline stages that will execute the image layout transition
|
|
// Source pipeline stage is host write/read execution (VK_PIPELINE_STAGE_HOST_BIT)
|
|
// Destination pipeline stage fragment shader access (VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT)
|
|
vkCmdPipelineBarrier(
|
|
copyCmd,
|
|
VK_PIPELINE_STAGE_HOST_BIT,
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
0,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &imageMemoryBarrier);
|
|
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
|
}
|
|
|
|
ktxTexture_Destroy(ktxTexture);
|
|
|
|
// Create a texture sampler
|
|
// In Vulkan textures are accessed by samplers
|
|
// This separates all the sampling information from the texture data. This means you could have multiple sampler objects for the same texture with different settings
|
|
// Note: Similar to the samplers available with OpenGL 3.3
|
|
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
|
|
sampler.magFilter = VK_FILTER_LINEAR;
|
|
sampler.minFilter = VK_FILTER_LINEAR;
|
|
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
|
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
|
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
|
sampler.mipLodBias = 0.0f;
|
|
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
|
sampler.minLod = 0.0f;
|
|
// Set max level-of-detail to mip level count of the texture
|
|
sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f;
|
|
// Enable anisotropic filtering
|
|
// This feature is optional, so we must check if it's supported on the device
|
|
if (vulkanDevice->features.samplerAnisotropy) {
|
|
// Use max. level of anisotropy for this example
|
|
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
|
|
sampler.anisotropyEnable = VK_TRUE;
|
|
} else {
|
|
// The device does not support anisotropic filtering
|
|
sampler.maxAnisotropy = 1.0;
|
|
sampler.anisotropyEnable = VK_FALSE;
|
|
}
|
|
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler));
|
|
|
|
// Create image view
|
|
// Textures are not directly accessed by the shaders and
|
|
// are abstracted by image views containing additional
|
|
// information and sub resource ranges
|
|
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
|
|
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
view.format = format;
|
|
// The subresource range describes the set of mip levels (and array layers) that can be accessed through this image view
|
|
// It's possible to create multiple image views for a single image referring to different (and/or overlapping) ranges of the image
|
|
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
view.subresourceRange.baseMipLevel = 0;
|
|
view.subresourceRange.baseArrayLayer = 0;
|
|
view.subresourceRange.layerCount = 1;
|
|
// Linear tiling usually won't support mip maps
|
|
// Only set mip map count if optimal tiling is used
|
|
view.subresourceRange.levelCount = (useStaging) ? texture.mipLevels : 1;
|
|
// The view will be based on the texture's image
|
|
view.image = texture.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
|
|
}
|
|
|
|
// Free all Vulkan resources used by a texture object
|
|
void destroyTextureImage(Texture texture)
|
|
{
|
|
vkDestroyImageView(device, texture.view, nullptr);
|
|
vkDestroyImage(device, texture.image, nullptr);
|
|
vkDestroySampler(device, texture.sampler, nullptr);
|
|
vkFreeMemory(device, texture.deviceMemory, nullptr);
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets);
|
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
|
|
|
|
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
// Creates a vertex and index buffer for a quad made of two triangles
|
|
// This is used to display the texture on
|
|
void generateQuad()
|
|
{
|
|
// Setup vertices for a single uv-mapped quad made from two triangles
|
|
std::vector<Vertex> vertices =
|
|
{
|
|
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
|
|
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
|
|
{ { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } },
|
|
{ { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }
|
|
};
|
|
|
|
// Setup indices
|
|
std::vector<uint32_t> indices = { 0,1,2, 2,3,0 };
|
|
indexCount = static_cast<uint32_t>(indices.size());
|
|
|
|
// Create buffers and upload data to the GPU
|
|
struct StagingBuffers {
|
|
vks::Buffer vertices;
|
|
vks::Buffer indices;
|
|
} stagingBuffers;
|
|
|
|
// Host visible source buffers (staging)
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.vertices, vertices.size() * sizeof(Vertex), vertices.data()));
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.indices, indices.size() * sizeof(uint32_t), indices.data()));
|
|
|
|
// Device local destination buffers
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex)));
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &indexBuffer, indices.size() * sizeof(uint32_t)));
|
|
|
|
// Copy from host do device
|
|
vulkanDevice->copyBuffer(&stagingBuffers.vertices, &vertexBuffer, queue);
|
|
vulkanDevice->copyBuffer(&stagingBuffers.indices, &indexBuffer, queue);
|
|
|
|
// Clean up
|
|
stagingBuffers.vertices.destroy();
|
|
stagingBuffers.indices.destroy();
|
|
}
|
|
|
|
void setupDescriptors()
|
|
{
|
|
// Pool
|
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
|
// The sample uses a combined image + sampler descriptor to sample the texture in the fragment shader
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
|
|
};
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
|
|
// Layout
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
|
|
// Binding 1 : Fragment shader image sampler
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
|
|
// Set
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
|
|
|
// Setup a descriptor image info for the current texture to be used as a combined image sampler
|
|
VkDescriptorImageInfo textureDescriptor;
|
|
// The image's view (images are never directly accessed by the shader, but rather through views defining subresources)
|
|
textureDescriptor.imageView = texture.view;
|
|
// The sampler (Telling the pipeline how to sample the texture, including repeat, border, etc.)
|
|
textureDescriptor.sampler = texture.sampler;
|
|
// The current layout of the image(Note: Should always fit the actual use, e.g.shader read)
|
|
textureDescriptor.imageLayout = texture.imageLayout;
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
|
|
// Binding 1 : Fragment shader texture sampler
|
|
// Fragment shader: layout (binding = 1) uniform sampler2D samplerColor;
|
|
vks::initializers::writeDescriptorSet(descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // The descriptor set will use a combined image sampler (as opposed to splitting image and sampler)
|
|
1, // Shader binding point 1
|
|
&textureDescriptor) // Pointer to the descriptor image for our texture
|
|
};
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
// Layout
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
|
|
// Pipeline
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
|
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
|
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
|
|
|
|
// Shaders
|
|
shaderStages[0] = loadShader(getShadersPath() + "texture/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "texture/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
// Vertex input state
|
|
std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
|
|
vks::initializers::vertexInputBindingDescription(0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX)
|
|
};
|
|
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
|
|
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)),
|
|
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv)),
|
|
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal)),
|
|
};
|
|
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
|
|
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
|
|
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
|
|
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
|
pipelineCreateInfo.pVertexInputState = &vertexInputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
|
|
}
|
|
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Vertex shader uniform buffer block
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(uniformData), &uniformData));
|
|
VK_CHECK_RESULT(uniformBuffer.map());
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
uniformData.projection = camera.matrices.perspective;
|
|
uniformData.modelView = camera.matrices.view;
|
|
uniformData.viewPos = camera.viewPos;
|
|
memcpy(uniformBuffer.mapped, &uniformData, sizeof(uniformData));
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
loadTexture();
|
|
generateQuad();
|
|
prepareUniformBuffers();
|
|
setupDescriptors();
|
|
preparePipelines();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
updateUniformBuffers();
|
|
draw();
|
|
}
|
|
|
|
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
|
{
|
|
if (overlay->header("Settings")) {
|
|
if (overlay->sliderFloat("LOD bias", &uniformData.lodBias, 0.0f, (float)texture.mipLevels)) {
|
|
updateUniformBuffers();
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|