1132 lines
36 KiB
C++
1132 lines
36 KiB
C++
/*
|
|
* Vulkan Example - Compute shader particle system
|
|
*
|
|
* Note :
|
|
* This is a basic android example. It may be integrated into the other examples at some point in the future.
|
|
* Until then this serves as a starting point for using Vulkan on Android, with some of the functionality required
|
|
* already moved to the example base classes (e.g. swap chain)
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include "vulkanandroid.h"
|
|
#include "vulkanswapchain.hpp"
|
|
#include "vulkanandroidbase.hpp"
|
|
#include <android/asset_manager.h>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#define GLM_DEPTH_ZERO_TO_ONE
|
|
#include "glm/glm.hpp"
|
|
#include "glm/gtc/matrix_transform.hpp"
|
|
|
|
#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, "AndroidProject1.NativeActivity", __VA_ARGS__))
|
|
#define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, "AndroidProject1.NativeActivity", __VA_ARGS__))
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
#define PARTICLE_COUNT 4 * 1024
|
|
|
|
struct saved_state {
|
|
glm::vec3 rotation;
|
|
float zoom;
|
|
};
|
|
|
|
struct VulkanExample : public VulkanAndroidExampleBase
|
|
{
|
|
public:
|
|
int animating;
|
|
struct saved_state state;
|
|
|
|
float timer = 0.0f;
|
|
float animStart = 50.0f;
|
|
bool animate = true;
|
|
|
|
// Vulkan
|
|
struct Vertex {
|
|
float pos[3];
|
|
float uv[2];
|
|
};
|
|
|
|
struct Texture {
|
|
VkSampler sampler;
|
|
VkImage image;
|
|
VkImageLayout imageLayout;
|
|
VkDeviceMemory deviceMemory;
|
|
VkImageView view;
|
|
uint32_t width, height;
|
|
uint32_t mipLevels;
|
|
} texture;
|
|
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
VkDescriptorSet descriptorSet;
|
|
VkPipelineLayout pipelineLayout;
|
|
|
|
struct {
|
|
VkPipelineVertexInputStateCreateInfo inputState;
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
} vertices;
|
|
|
|
struct {
|
|
VkPipeline solid;
|
|
VkPipeline compute;
|
|
} pipelines;
|
|
|
|
VkQueue computeQueue;
|
|
VkCommandBuffer computeCmdBuffer;
|
|
VkPipelineLayout computePipelineLayout;
|
|
VkDescriptorSet computeDescriptorSet;
|
|
VkDescriptorSetLayout computeDescriptorSetLayout;
|
|
|
|
vkTools::UniformData computeStorageBuffer;
|
|
|
|
struct Particle {
|
|
glm::vec4 pos;
|
|
glm::vec4 col;
|
|
glm::vec4 vel;
|
|
};
|
|
|
|
struct {
|
|
float deltaT;
|
|
float destX;
|
|
float destY;
|
|
int32_t particleCount = PARTICLE_COUNT;
|
|
} computeUbo;
|
|
|
|
vkTools::UniformData uniformDataCompute;
|
|
|
|
void loadTexture(const char* fileName, VkFormat format, bool forceLinearTiling)
|
|
{
|
|
VkFormatProperties formatProperties;
|
|
VkResult err;
|
|
|
|
AAsset* asset = AAssetManager_open(app->activity->assetManager, fileName, AASSET_MODE_STREAMING);
|
|
assert(asset);
|
|
size_t size = AAsset_getLength(asset);
|
|
assert(size > 0);
|
|
|
|
//char *textureData = new char[size];
|
|
void *textureData = malloc(size);
|
|
AAsset_read(asset, textureData, size);
|
|
AAsset_close(asset);
|
|
|
|
gli::texture2D tex2D(gli::load((const char*)textureData, size));
|
|
assert(!tex2D.empty());
|
|
|
|
texture.width = tex2D[0].dimensions().x;
|
|
texture.height = tex2D[0].dimensions().y;
|
|
texture.mipLevels = tex2D.levels();
|
|
|
|
// Get device properites for the requested texture format
|
|
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
|
|
|
|
// Only use linear tiling if requested (and supported by the device)
|
|
// Support for linear tiling is mostly limited, so prefer to use
|
|
// optimal tiling instead
|
|
// On most implementations linear tiling will only support a very
|
|
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
|
|
VkBool32 useStaging = true;
|
|
|
|
// Only use linear tiling if forced
|
|
if (forceLinearTiling)
|
|
{
|
|
// Don't use linear if format is not supported for (linear) shader sampling
|
|
useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
|
|
}
|
|
|
|
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
|
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCreateInfo.format = format;
|
|
imageCreateInfo.mipLevels = 1;
|
|
imageCreateInfo.arrayLayers = 1;
|
|
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
|
|
imageCreateInfo.usage = (useStaging) ? VK_IMAGE_USAGE_TRANSFER_SRC_BIT : VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
imageCreateInfo.flags = 0;
|
|
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
|
|
|
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
|
|
startSetupCommandBuffer();
|
|
|
|
if (useStaging)
|
|
{
|
|
// Load all available mip levels into linear textures
|
|
// and copy to optimal tiling target
|
|
struct MipLevel {
|
|
VkImage image;
|
|
VkDeviceMemory memory;
|
|
};
|
|
std::vector<MipLevel> mipLevels;
|
|
mipLevels.resize(texture.mipLevels);
|
|
|
|
// Copy mip levels
|
|
for (uint32_t level = 0; level < texture.mipLevels; ++level)
|
|
{
|
|
imageCreateInfo.extent.width = tex2D[level].dimensions().x;
|
|
imageCreateInfo.extent.height = tex2D[level].dimensions().y;
|
|
imageCreateInfo.extent.depth = 1;
|
|
|
|
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mipLevels[level].image);
|
|
assert(!err);
|
|
|
|
vkGetImageMemoryRequirements(device, mipLevels[level].image, &memReqs);
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
|
|
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mipLevels[level].memory);
|
|
assert(!err);
|
|
err = vkBindImageMemory(device, mipLevels[level].image, mipLevels[level].memory, 0);
|
|
assert(!err);
|
|
|
|
VkImageSubresource subRes = {};
|
|
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
|
|
VkSubresourceLayout subResLayout;
|
|
void *data;
|
|
|
|
vkGetImageSubresourceLayout(device, mipLevels[level].image, &subRes, &subResLayout);
|
|
assert(!err);
|
|
err = vkMapMemory(device, mipLevels[level].memory, 0, memReqs.size, 0, &data);
|
|
assert(!err);
|
|
size_t levelSize = tex2D[level].size();
|
|
memcpy(data, tex2D[level].data(), levelSize);
|
|
vkUnmapMemory(device, mipLevels[level].memory);
|
|
|
|
LOGW("setImageLayout %d", 1);
|
|
|
|
// Image barrier for linear image (base)
|
|
// Linear image will be used as a source for the copy
|
|
vkTools::setImageLayout(
|
|
setupCmdBuffer,
|
|
mipLevels[level].image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
}
|
|
|
|
// Setup texture as blit target with optimal tiling
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
imageCreateInfo.mipLevels = texture.mipLevels;
|
|
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
|
|
|
err = vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image);
|
|
assert(!err);
|
|
|
|
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
|
|
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
|
|
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory);
|
|
assert(!err);
|
|
err = vkBindImageMemory(device, texture.image, texture.deviceMemory, 0);
|
|
assert(!err);
|
|
|
|
// Image barrier for optimal image (target)
|
|
// Optimal image will be used as destination for the copy
|
|
vkTools::setImageLayout(
|
|
setupCmdBuffer,
|
|
texture.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
|
|
|
|
// Copy mip levels one by one
|
|
for (uint32_t level = 0; level < texture.mipLevels; ++level)
|
|
{
|
|
// Copy region for image blit
|
|
VkImageCopy copyRegion = {};
|
|
|
|
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
copyRegion.srcSubresource.baseArrayLayer = 0;
|
|
copyRegion.srcSubresource.mipLevel = 0;
|
|
copyRegion.srcSubresource.layerCount = 1;
|
|
copyRegion.srcOffset = { 0, 0, 0 };
|
|
|
|
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
copyRegion.dstSubresource.baseArrayLayer = 0;
|
|
// Set mip level to copy the linear image to
|
|
copyRegion.dstSubresource.mipLevel = level;
|
|
copyRegion.dstSubresource.layerCount = 1;
|
|
copyRegion.dstOffset = { 0, 0, 0 };
|
|
|
|
copyRegion.extent.width = tex2D[level].dimensions().x;
|
|
copyRegion.extent.height = tex2D[level].dimensions().y;
|
|
copyRegion.extent.depth = 1;
|
|
|
|
// Put image copy into command buffer
|
|
vkCmdCopyImage(
|
|
setupCmdBuffer,
|
|
mipLevels[level].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
1, ©Region);
|
|
|
|
// Change texture image layout to shader read after the copy
|
|
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
vkTools::setImageLayout(
|
|
setupCmdBuffer,
|
|
texture.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
texture.imageLayout);
|
|
}
|
|
|
|
// Clean up linear images
|
|
// No longer required after mip levels
|
|
// have been transformed over to optimal tiling
|
|
for (auto& level : mipLevels)
|
|
{
|
|
vkDestroyImage(device, level.image, nullptr);
|
|
vkFreeMemory(device, level.memory, nullptr);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Prefer using optimal tiling, as linear tiling
|
|
// may support only a small set of features
|
|
// depending on implementation (e.g. no mip maps, only one layer, etc.)
|
|
|
|
VkImage mappableImage;
|
|
VkDeviceMemory mappableMemory;
|
|
|
|
// Load mip map level 0 to linear tiling image
|
|
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage);
|
|
assert(!err);
|
|
|
|
// Get memory requirements for this image
|
|
// like size and alignment
|
|
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
|
|
// Set memory allocation size to required memory size
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
|
|
// Get memory type that can be mapped to host memory
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
|
|
|
|
// Allocate host memory
|
|
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory);
|
|
assert(!err);
|
|
|
|
// Bind allocated image for use
|
|
err = vkBindImageMemory(device, mappableImage, mappableMemory, 0);
|
|
assert(!err);
|
|
|
|
// Get sub resource layout
|
|
// Mip map count, array layer, etc.
|
|
VkImageSubresource subRes = {};
|
|
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
|
|
VkSubresourceLayout subResLayout;
|
|
void *data;
|
|
|
|
// Get sub resources layout
|
|
// Includes row pitch, size offsets, etc.
|
|
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
|
|
assert(!err);
|
|
|
|
// Map image memory
|
|
err = vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data);
|
|
assert(!err);
|
|
|
|
// Copy image data into memory
|
|
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
|
|
|
|
vkUnmapMemory(device, mappableMemory);
|
|
|
|
// Linear tiled images don't need to be staged
|
|
// and can be directly used as textures
|
|
texture.image = mappableImage;
|
|
texture.deviceMemory = mappableMemory;
|
|
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
|
|
// Setup image memory barrier
|
|
vkTools::setImageLayout(
|
|
setupCmdBuffer,
|
|
texture.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
|
|
texture.imageLayout);
|
|
}
|
|
|
|
flushSetupCommandBuffer();
|
|
|
|
// Create sampler
|
|
// In Vulkan textures are accessed by samplers
|
|
// This separates all the sampling information from the
|
|
// texture data
|
|
// This means you could have multiple sampler objects
|
|
// for the same texture with different settings
|
|
// Similar to the samplers available with OpenGL 3.3
|
|
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
|
|
sampler.magFilter = VK_FILTER_LINEAR;
|
|
sampler.minFilter = VK_FILTER_LINEAR;
|
|
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
sampler.addressModeV = sampler.addressModeU;
|
|
sampler.addressModeW = sampler.addressModeU;
|
|
sampler.mipLodBias = 0.0f;
|
|
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
|
sampler.minLod = 0.0f;
|
|
// Max level-of-detail should match mip level count
|
|
sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f;
|
|
// Enable anisotropic filtering
|
|
sampler.maxAnisotropy = 8;
|
|
sampler.anisotropyEnable = VK_TRUE;
|
|
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
err = vkCreateSampler(device, &sampler, nullptr, &texture.sampler);
|
|
assert(!err);
|
|
|
|
// Create image view
|
|
// Textures are not directly accessed by the shaders and
|
|
// are abstracted by image views containing additional
|
|
// information and sub resource ranges
|
|
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
|
|
view.image = VK_NULL_HANDLE;
|
|
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
view.format = format;
|
|
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
|
|
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
view.subresourceRange.baseMipLevel = 0;
|
|
view.subresourceRange.baseArrayLayer = 0;
|
|
view.subresourceRange.layerCount = 1;
|
|
// Linear tiling usually won't support mip maps
|
|
// Only set mip map count if optimal tiling is used
|
|
view.subresourceRange.levelCount = (useStaging) ? texture.mipLevels : 1;
|
|
view.image = texture.image;
|
|
err = vkCreateImageView(device, &view, nullptr, &texture.view);
|
|
assert(!err);
|
|
}
|
|
|
|
// Free staging resources used while creating a texture
|
|
void destroyTextureImage(struct Texture texture)
|
|
{
|
|
vkDestroyImage(device, texture.image, nullptr);
|
|
vkFreeMemory(device, texture.deviceMemory, nullptr);
|
|
}
|
|
|
|
void initVulkan()
|
|
{
|
|
VulkanAndroidExampleBase::initVulkan();
|
|
|
|
loadTexture(
|
|
"textures/android_robot.ktx",
|
|
VK_FORMAT_R8G8B8A8_UNORM,
|
|
false);
|
|
|
|
createCommandBuffers();
|
|
|
|
// Compute stuff
|
|
getComputeQueue();
|
|
createComputeCommandBuffer();
|
|
prepareStorageBuffers();
|
|
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSet();
|
|
|
|
prepareCompute();
|
|
|
|
buildCommandBuffers();
|
|
buildComputeCommandBuffer();
|
|
|
|
state.zoom = -5.0f;
|
|
state.rotation = glm::vec3();
|
|
|
|
prepared = true;
|
|
}
|
|
|
|
void cleanupVulkan()
|
|
{
|
|
prepared = false;
|
|
vkDestroyPipeline(device, pipelines.solid, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyPipelineLayout(device, computePipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, computeDescriptorSetLayout, nullptr);
|
|
vkDestroyBuffer(device, uniformDataCompute.buffer, nullptr);
|
|
vkFreeMemory(device, uniformDataCompute.memory, nullptr);
|
|
vkDestroyBuffer(device, computeStorageBuffer.buffer, nullptr);
|
|
vkFreeMemory(device, computeStorageBuffer.memory, nullptr);
|
|
|
|
destroyTextureImage(texture);
|
|
|
|
vkFreeCommandBuffers(device, cmdPool, 1, &computeCmdBuffer);
|
|
|
|
VulkanExample::cleanUpVulkan();
|
|
}
|
|
|
|
// Find and create a compute capable device queue
|
|
void getComputeQueue()
|
|
{
|
|
uint32_t queueIndex = 0;
|
|
uint32_t queueCount;
|
|
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
|
|
assert(queueCount >= 1);
|
|
|
|
std::vector<VkQueueFamilyProperties> queueProps;
|
|
queueProps.resize(queueCount);
|
|
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());
|
|
|
|
for (queueIndex = 0; queueIndex < queueCount; queueIndex++)
|
|
{
|
|
if (queueProps[queueIndex].queueFlags & VK_QUEUE_COMPUTE_BIT)
|
|
break;
|
|
}
|
|
assert(queueIndex < queueCount);
|
|
|
|
VkDeviceQueueCreateInfo queueCreateInfo = {};
|
|
queueCreateInfo.queueFamilyIndex = queueIndex;
|
|
queueCreateInfo.queueCount = 1;
|
|
vkGetDeviceQueue(device, queueIndex, 0, &computeQueue);
|
|
}
|
|
|
|
void createComputeCommandBuffer()
|
|
{
|
|
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
|
|
vkTools::initializers::commandBufferAllocateInfo(
|
|
cmdPool,
|
|
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
|
|
1);
|
|
|
|
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &computeCmdBuffer);
|
|
assert(!vkRes);
|
|
}
|
|
|
|
void buildComputeCommandBuffer()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();;
|
|
|
|
vkBeginCommandBuffer(computeCmdBuffer, &cmdBufInfo);
|
|
|
|
vkCmdBindPipeline(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelines.compute);
|
|
vkCmdBindDescriptorSets(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 0, 1, &computeDescriptorSet, 0, 0);
|
|
|
|
vkCmdDispatch(computeCmdBuffer, PARTICLE_COUNT / 16, 1, 1);
|
|
|
|
vkEndCommandBuffer(computeCmdBuffer);
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
computeUbo.deltaT = (1.0f / 60.0f) * 4.0f;
|
|
computeUbo.destX = sin(glm::radians(timer*360.0)) * 0.75f;
|
|
computeUbo.destY = cos(glm::radians(timer*360.0)) * 0.10f;
|
|
uint8_t *pData;
|
|
VkResult err = vkMapMemory(device, uniformDataCompute.memory, 0, sizeof(computeUbo), 0, (void **)&pData);
|
|
assert(!err);
|
|
memcpy(pData, &computeUbo, sizeof(computeUbo));
|
|
vkUnmapMemory(device, uniformDataCompute.memory);
|
|
}
|
|
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
VkMemoryRequirements memReqs;
|
|
|
|
// Vertex shader uniform buffer block
|
|
VkBufferCreateInfo bufferInfo = {};
|
|
VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo();
|
|
VkResult err;
|
|
|
|
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
bufferInfo.size = sizeof(computeUbo);
|
|
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
|
|
|
|
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataCompute.buffer);
|
|
assert(!err);
|
|
vkGetBufferMemoryRequirements(device, uniformDataCompute.buffer, &memReqs);
|
|
allocInfo.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex);
|
|
err = vkAllocateMemory(device, &allocInfo, nullptr, &(uniformDataCompute.memory));
|
|
assert(!err);
|
|
err = vkBindBufferMemory(device, uniformDataCompute.buffer, uniformDataCompute.memory, 0);
|
|
assert(!err);
|
|
|
|
uniformDataCompute.descriptor.buffer = uniformDataCompute.buffer;
|
|
uniformDataCompute.descriptor.offset = 0;
|
|
uniformDataCompute.descriptor.range = sizeof(computeUbo);
|
|
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkResult err;
|
|
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
|
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
|
|
VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
|
|
0,
|
|
VK_FALSE);
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
|
vkTools::initializers::pipelineRasterizationStateCreateInfo(
|
|
VK_POLYGON_MODE_FILL,
|
|
VK_CULL_MODE_NONE,
|
|
VK_FRONT_FACE_COUNTER_CLOCKWISE,
|
|
0);
|
|
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
|
vkTools::initializers::pipelineColorBlendAttachmentState(
|
|
0xf,
|
|
VK_FALSE);
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
|
vkTools::initializers::pipelineColorBlendStateCreateInfo(
|
|
1,
|
|
&blendAttachmentState);
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
|
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
|
|
VK_TRUE,
|
|
VK_TRUE,
|
|
VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState =
|
|
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampleState =
|
|
vkTools::initializers::pipelineMultisampleStateCreateInfo(
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
0);
|
|
|
|
std::vector<VkDynamicState> dynamicStateEnables;
|
|
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
|
|
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
|
|
|
|
VkPipelineDynamicStateCreateInfo dynamicState =
|
|
vkTools::initializers::pipelineDynamicStateCreateInfo(
|
|
dynamicStateEnables.data(),
|
|
dynamicStateEnables.size(),
|
|
0);
|
|
|
|
// Rendering pipeline
|
|
// Load shaders
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
shaderStages[0] = loadShader("shaders/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader("shaders/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
|
vkTools::initializers::pipelineCreateInfo(
|
|
pipelineLayout,
|
|
renderPass,
|
|
0);
|
|
|
|
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = shaderStages.size();
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
pipelineCreateInfo.renderPass = renderPass;
|
|
|
|
// Additive blending
|
|
blendAttachmentState.colorWriteMask = 0xF;
|
|
blendAttachmentState.blendEnable = VK_TRUE;
|
|
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
|
|
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
|
|
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
|
|
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
|
|
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
|
|
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA;
|
|
|
|
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
|
|
assert(!err);
|
|
}
|
|
|
|
// Setup and fill the compute shader storage buffers for
|
|
// vertex positions and velocities
|
|
void prepareStorageBuffers()
|
|
{
|
|
float destPosX = 0.0f;
|
|
float destPosY = 0.0f;
|
|
|
|
// Initial particle positions
|
|
std::vector<Particle> particleBuffer;
|
|
for (int i = 0; i < PARTICLE_COUNT; ++i)
|
|
{
|
|
// Position
|
|
float aspectRatio = (float)height / (float)width;
|
|
float rndVal = (float)rand() / (float)(RAND_MAX / (360.0f * 3.14f * 2.0f));
|
|
float rndRad = (float)rand() / (float)(RAND_MAX)* 0.65f;
|
|
Particle p;
|
|
p.pos = glm::vec4(
|
|
destPosX + cos(rndVal) * rndRad * aspectRatio,
|
|
destPosY + sin(rndVal) * rndRad,
|
|
0.0f,
|
|
1.0f);
|
|
p.col = glm::vec4(
|
|
(float)(rand() % 255) / 255.0f,
|
|
(float)(rand() % 255) / 255.0f,
|
|
(float)(rand() % 255) / 255.0f,
|
|
1.0f);
|
|
p.vel = glm::vec4(0.0f);
|
|
particleBuffer.push_back(p);
|
|
}
|
|
|
|
// Buffer size is the same for all storage buffers
|
|
uint32_t storageBufferSize = particleBuffer.size() * sizeof(Particle);
|
|
|
|
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
|
|
VkResult err;
|
|
void *data;
|
|
|
|
// Allocate and fill storage buffer object
|
|
VkBufferCreateInfo vBufferInfo =
|
|
vkTools::initializers::bufferCreateInfo(
|
|
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
|
|
storageBufferSize);
|
|
err = vkCreateBuffer(device, &vBufferInfo, nullptr, &computeStorageBuffer.buffer);
|
|
assert(!err);
|
|
vkGetBufferMemoryRequirements(device, computeStorageBuffer.buffer, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
|
|
err = vkAllocateMemory(device, &memAlloc, nullptr, &computeStorageBuffer.memory);
|
|
assert(!err);
|
|
err = vkMapMemory(device, computeStorageBuffer.memory, 0, storageBufferSize, 0, &data);
|
|
assert(!err);
|
|
memcpy(data, particleBuffer.data(), storageBufferSize);
|
|
vkUnmapMemory(device, computeStorageBuffer.memory);
|
|
err = vkBindBufferMemory(device, computeStorageBuffer.buffer, computeStorageBuffer.memory, 0);
|
|
assert(!err);
|
|
|
|
computeStorageBuffer.descriptor.buffer = computeStorageBuffer.buffer;
|
|
computeStorageBuffer.descriptor.offset = 0;
|
|
computeStorageBuffer.descriptor.range = storageBufferSize;
|
|
|
|
// Binding description
|
|
vertices.bindingDescriptions.resize(1);
|
|
vertices.bindingDescriptions[0] =
|
|
vkTools::initializers::vertexInputBindingDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
sizeof(Particle),
|
|
VK_VERTEX_INPUT_RATE_VERTEX);
|
|
|
|
// Attribute descriptions
|
|
// Describes memory layout and shader positions
|
|
vertices.attributeDescriptions.resize(2);
|
|
// Location 0 : Position
|
|
vertices.attributeDescriptions[0] =
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
0,
|
|
VK_FORMAT_R32G32B32A32_SFLOAT,
|
|
0);
|
|
// Location 1 : Color
|
|
vertices.attributeDescriptions[1] =
|
|
vkTools::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
1,
|
|
VK_FORMAT_R32G32B32A32_SFLOAT,
|
|
sizeof(float) * 4);
|
|
|
|
// Assign to vertex buffer
|
|
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
|
|
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
|
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
|
|
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
|
}
|
|
|
|
void prepareCompute()
|
|
{
|
|
// Create compute pipeline
|
|
// Compute pipelines are created separate from graphics pipelines
|
|
// even if they use the same queue
|
|
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
|
|
setLayoutBindings.push_back(
|
|
// Binding 0 : Particle position storage buffer
|
|
vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
0));
|
|
setLayoutBindings.push_back(
|
|
// Binding 1 : Uniform buffer
|
|
vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_SHADER_STAGE_COMPUTE_BIT,
|
|
1));
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vkTools::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
setLayoutBindings.size());
|
|
|
|
VkResult err = vkCreateDescriptorSetLayout(
|
|
device,
|
|
&descriptorLayout,
|
|
nullptr,
|
|
&computeDescriptorSetLayout);
|
|
assert(!err);
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
|
vkTools::initializers::pipelineLayoutCreateInfo(
|
|
&computeDescriptorSetLayout,
|
|
1);
|
|
|
|
err = vkCreatePipelineLayout(
|
|
device,
|
|
&pPipelineLayoutCreateInfo,
|
|
nullptr,
|
|
&computePipelineLayout);
|
|
assert(!err);
|
|
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vkTools::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&computeDescriptorSetLayout,
|
|
1);
|
|
|
|
err = vkAllocateDescriptorSets(device, &allocInfo, &computeDescriptorSet);
|
|
assert(!err);
|
|
|
|
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets;
|
|
computeWriteDescriptorSets.push_back(
|
|
// Binding 0 : Particle position storage buffer
|
|
vkTools::initializers::writeDescriptorSet(
|
|
computeDescriptorSet,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
0,
|
|
&computeStorageBuffer.descriptor));
|
|
computeWriteDescriptorSets.push_back(
|
|
// Binding 1 : Uniform buffer
|
|
vkTools::initializers::writeDescriptorSet(
|
|
computeDescriptorSet,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
1,
|
|
&uniformDataCompute.descriptor));
|
|
|
|
vkUpdateDescriptorSets(device, computeWriteDescriptorSets.size(), computeWriteDescriptorSets.data(), 0, NULL);
|
|
|
|
// Create pipeline
|
|
VkComputePipelineCreateInfo computePipelineCreateInfo =
|
|
vkTools::initializers::computePipelineCreateInfo(
|
|
computePipelineLayout,
|
|
0);
|
|
computePipelineCreateInfo.stage = loadShader("shaders/particle.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
|
|
|
|
err = vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &pipelines.compute);
|
|
assert(!err);
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
std::vector<VkDescriptorPoolSize> poolSizes;
|
|
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1));
|
|
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1));
|
|
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1));
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
|
vkTools::initializers::descriptorPoolCreateInfo(
|
|
poolSizes.size(),
|
|
poolSizes.data(),
|
|
2);
|
|
|
|
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
|
|
assert(!vkRes);
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
|
|
setLayoutBindings.push_back(
|
|
// Binding 0 : Fragment shader image sampler
|
|
vkTools::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
0));
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vkTools::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
setLayoutBindings.size());
|
|
|
|
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
|
|
assert(!err);
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
|
vkTools::initializers::pipelineLayoutCreateInfo(
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
|
|
assert(!err);
|
|
}
|
|
|
|
void setupDescriptorSet()
|
|
{
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vkTools::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
|
|
assert(!vkRes);
|
|
|
|
// Image descriptor for the color map texture
|
|
VkDescriptorImageInfo texDescriptor =
|
|
vkTools::initializers::descriptorImageInfo(
|
|
texture.sampler,
|
|
texture.view,
|
|
VK_IMAGE_LAYOUT_GENERAL);
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
|
|
writeDescriptorSets.push_back(
|
|
// Binding 0 : Fragment shader texture sampler
|
|
vkTools::initializers::writeDescriptorSet(
|
|
descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
0,
|
|
&texDescriptor));
|
|
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
VkResult err;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
|
|
assert(!err);
|
|
|
|
// Buffer memory barrier to make sure that compute shader
|
|
// writes are finished before using the storage buffer
|
|
// in the vertex shader
|
|
VkBufferMemoryBarrier bufferBarrier = vkTools::initializers::bufferMemoryBarrier();
|
|
// Source access : Compute shader buffer write
|
|
bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
|
// Dest access : Vertex shader access (attribute binding)
|
|
bufferBarrier.dstAccessMask = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
|
|
bufferBarrier.buffer = computeStorageBuffer.buffer;
|
|
bufferBarrier.offset = 0;
|
|
bufferBarrier.size = computeStorageBuffer.descriptor.range;
|
|
bufferBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
bufferBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
1, &bufferBarrier,
|
|
0, nullptr);
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vkTools::initializers::viewport(
|
|
(float)width,
|
|
(float)height,
|
|
0.0f,
|
|
1.0f
|
|
);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vkTools::initializers::rect2D(
|
|
width,
|
|
height,
|
|
0,
|
|
0
|
|
);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
|
|
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &computeStorageBuffer.buffer, offsets);
|
|
vkCmdDraw(drawCmdBuffers[i], PARTICLE_COUNT, 1, 0, 0);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VkImageMemoryBarrier prePresentBarrier = vkTools::prePresentBarrier(swapChain.buffers[i].image);
|
|
vkCmdPipelineBarrier(
|
|
drawCmdBuffers[i],
|
|
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_FLAGS_NONE,
|
|
0, nullptr,
|
|
0, nullptr,
|
|
1, &prePresentBarrier);
|
|
|
|
err = vkEndCommandBuffer(drawCmdBuffers[i]);
|
|
assert(!err);
|
|
}
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VkResult err;
|
|
|
|
// Get next image in the swap chain (back/front buffer)
|
|
err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer);
|
|
assert(!err);
|
|
|
|
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
|
|
|
|
VkPipelineStageFlags pipelineStages = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
|
|
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
|
|
submitInfo.waitSemaphoreCount = 1;
|
|
submitInfo.pWaitSemaphores = &semaphores.presentComplete;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
submitInfo.pWaitDstStageMask = &pipelineStages;
|
|
submitInfo.signalSemaphoreCount = 1;
|
|
submitInfo.pSignalSemaphores = &semaphores.submitSignal;
|
|
|
|
// Submit to the graphics queue
|
|
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
|
|
assert(!err);
|
|
|
|
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
|
|
|
|
// Present the current buffer to the swap chain
|
|
// This will display the image
|
|
err = swapChain.queuePresent(queue, currentBuffer, semaphores.submitSignal);
|
|
assert(!err);
|
|
|
|
// Compute
|
|
VkSubmitInfo computeSubmitInfo = vkTools::initializers::submitInfo();
|
|
computeSubmitInfo.commandBufferCount = 1;
|
|
computeSubmitInfo.pCommandBuffers = &computeCmdBuffer;
|
|
|
|
err = vkQueueSubmit(computeQueue, 1, &computeSubmitInfo, VK_NULL_HANDLE);
|
|
assert(!err);
|
|
|
|
err = vkQueueWaitIdle(computeQueue);
|
|
assert(!err);
|
|
}
|
|
|
|
};
|
|
|
|
static int32_t handleInput(struct android_app* app, AInputEvent* event)
|
|
{
|
|
struct VulkanExample* vulkanExample = (struct VulkanExample*)app->userData;
|
|
if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION)
|
|
{
|
|
// todo
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void handleCommand(struct android_app* app, int32_t cmd)
|
|
{
|
|
VulkanExample* vulkanExample = (VulkanExample*)app->userData;
|
|
switch (cmd)
|
|
{
|
|
case APP_CMD_SAVE_STATE:
|
|
vulkanExample->app->savedState = malloc(sizeof(struct saved_state));
|
|
*((struct saved_state*)vulkanExample->app->savedState) = vulkanExample->state;
|
|
vulkanExample->app->savedStateSize = sizeof(struct saved_state);
|
|
break;
|
|
case APP_CMD_INIT_WINDOW:
|
|
if (vulkanExample->app->window != NULL)
|
|
{
|
|
vulkanExample->initVulkan();
|
|
assert(vulkanExample->prepared);
|
|
}
|
|
break;
|
|
case APP_CMD_LOST_FOCUS:
|
|
vulkanExample->animating = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This is the main entry point of a native application that is using
|
|
* android_native_app_glue. It runs in its own thread, with its own
|
|
* event loop for receiving input events and doing other things.
|
|
*/
|
|
void android_main(struct android_app* state)
|
|
{
|
|
VulkanExample *engine = new VulkanExample();
|
|
|
|
//memset(&engine, 0, sizeof(engine));
|
|
state->userData = engine;
|
|
state->onAppCmd = handleCommand;
|
|
state->onInputEvent = handleInput;
|
|
engine->app = state;
|
|
|
|
engine->animating = 1;
|
|
|
|
// loop waiting for stuff to do.
|
|
|
|
while (1)
|
|
{
|
|
// Read all pending events.
|
|
int ident;
|
|
int events;
|
|
struct android_poll_source* source;
|
|
|
|
while ((ident = ALooper_pollAll(engine->animating ? 0 : -1, NULL, &events, (void**)&source)) >= 0)
|
|
{
|
|
if (source != NULL)
|
|
{
|
|
source->process(state, source);
|
|
}
|
|
|
|
if (state->destroyRequested != 0)
|
|
{
|
|
engine->cleanupVulkan();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Render frame
|
|
if (engine->prepared)
|
|
{
|
|
if (engine->animating)
|
|
{
|
|
if (engine->animStart > 0.0f)
|
|
{
|
|
engine->animStart -= (1.0f / 60.0f) * 5.0f;
|
|
}
|
|
if ((engine->animate) & (engine->animStart <= 0.0f))
|
|
{
|
|
engine->timer += (1.0f / 60.0f) * 0.1f;
|
|
if (engine->timer > 1.0)
|
|
{
|
|
engine->timer -= 1.0f;
|
|
}
|
|
}
|
|
engine->updateUniformBuffers();
|
|
}
|
|
engine->draw();
|
|
}
|
|
}
|
|
}
|