procedural-3d-engine/android/texture/texture.NativeActivity/main.cpp

983 lines
32 KiB
C++

/*
* Vulkan Example - Textured quad
*
* Note :
* This is a basic android example. It may be integrated into the other examples at some point in the future.
* Until then this serves as a starting point for using Vulkan on Android, with some of the functionality required
* already moved to the example base classes (e.g. swap chain)
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <assert.h>
#include "vulkanandroid.h"
#include "vulkanswapchain.hpp"
#include "vulkanandroidbase.hpp"
#include <android/asset_manager.h>
#define GLM_FORCE_RADIANS
#define GLM_DEPTH_ZERO_TO_ONE
#include "glm/glm.hpp"
#include "glm/gtc/matrix_transform.hpp"
#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, "AndroidProject1.NativeActivity", __VA_ARGS__))
#define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, "AndroidProject1.NativeActivity", __VA_ARGS__))
#define VERTEX_BUFFER_BIND_ID 0
struct saved_state {
glm::vec3 rotation;
float zoom;
};
class VulkanExample : public VulkanAndroidExampleBase
{
public:
int animating;
struct saved_state state;
// Vulkan
struct Vertex {
float pos[3];
float uv[2];
};
struct Texture {
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
} texture;
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
VkPipelineLayout pipelineLayout;
struct {
VkBuffer buf;
VkDeviceMemory mem;
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
int count;
VkBuffer buf;
VkDeviceMemory mem;
} indices;
struct {
VkBuffer buffer;
VkDeviceMemory memory;
VkDescriptorBufferInfo descriptor;
} uniformDataVS;
struct {
glm::mat4 projection;
glm::mat4 model;
} uboVS;
struct {
VkPipeline solid;
} pipelines;
void loadTexture(const char* fileName, VkFormat format, bool forceLinearTiling)
{
VkFormatProperties formatProperties;
VkResult err;
AAsset* asset = AAssetManager_open(app->activity->assetManager, fileName, AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
void *textureData = malloc(size);
AAsset_read(asset, textureData, size);
AAsset_close(asset);
gli::texture2D tex2D(gli::load((const char*)textureData, size));
assert(!tex2D.empty());
texture.width = tex2D[0].dimensions().x;
texture.height = tex2D[0].dimensions().y;
texture.mipLevels = tex2D.levels();
// Get device properites for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Only use linear tiling if requested (and supported by the device)
// Support for linear tiling is mostly limited, so prefer to use
// optimal tiling instead
// On most implementations linear tiling will only support a very
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
VkBool32 useStaging = true;
// Only use linear tiling if forced
if (forceLinearTiling)
{
// Don't use linear if format is not supported for (linear) shader sampling
useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
}
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = (useStaging) ? VK_IMAGE_USAGE_TRANSFER_SRC_BIT : VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.flags = 0;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
startSetupCommandBuffer();
if (useStaging)
{
// Load all available mip levels into linear textures
// and copy to optimal tiling target
struct MipLevel {
VkImage image;
VkDeviceMemory memory;
};
std::vector<MipLevel> mipLevels;
mipLevels.resize(texture.mipLevels);
// Copy mip levels
for (uint32_t level = 0; level < texture.mipLevels; ++level)
{
imageCreateInfo.extent.width = tex2D[level].dimensions().x;
imageCreateInfo.extent.height = tex2D[level].dimensions().y;
imageCreateInfo.extent.depth = 1;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mipLevels[level].image);
assert(!err);
vkGetImageMemoryRequirements(device, mipLevels[level].image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mipLevels[level].memory);
assert(!err);
err = vkBindImageMemory(device, mipLevels[level].image, mipLevels[level].memory, 0);
assert(!err);
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
vkGetImageSubresourceLayout(device, mipLevels[level].image, &subRes, &subResLayout);
assert(!err);
err = vkMapMemory(device, mipLevels[level].memory, 0, memReqs.size, 0, &data);
assert(!err);
size_t levelSize = tex2D[level].size();
memcpy(data, tex2D[level].data(), levelSize);
vkUnmapMemory(device, mipLevels[level].memory);
LOGW("setImageLayout %d", 1);
// Image barrier for linear image (base)
// Linear image will be used as a source for the copy
vkTools::setImageLayout(
setupCmdBuffer,
mipLevels[level].image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
// Setup texture as blit target with optimal tiling
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.mipLevels = texture.mipLevels;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
err = vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image);
assert(!err);
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory);
assert(!err);
err = vkBindImageMemory(device, texture.image, texture.deviceMemory, 0);
assert(!err);
// Image barrier for optimal image (target)
// Optimal image will be used as destination for the copy
vkTools::setImageLayout(
setupCmdBuffer,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Copy mip levels one by one
for (uint32_t level = 0; level < texture.mipLevels; ++level)
{
// Copy region for image blit
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = 0;
// Set mip level to copy the linear image to
copyRegion.dstSubresource.mipLevel = level;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = tex2D[level].dimensions().x;
copyRegion.extent.height = tex2D[level].dimensions().y;
copyRegion.extent.depth = 1;
// Put image copy into command buffer
vkCmdCopyImage(
setupCmdBuffer,
mipLevels[level].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyRegion);
// Change texture image layout to shader read after the copy
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(
setupCmdBuffer,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture.imageLayout);
}
// Clean up linear images
// No longer required after mip levels
// have been transformed over to optimal tiling
for (auto& level : mipLevels)
{
vkDestroyImage(device, level.image, nullptr);
vkFreeMemory(device, level.memory, nullptr);
}
}
else
{
// Prefer using optimal tiling, as linear tiling
// may support only a small set of features
// depending on implementation (e.g. no mip maps, only one layer, etc.)
VkImage mappableImage;
VkDeviceMemory mappableMemory;
// Load mip map level 0 to linear tiling image
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage);
assert(!err);
// Get memory requirements for this image
// like size and alignment
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
// Set memory allocation size to required memory size
memAllocInfo.allocationSize = memReqs.size;
// Get memory type that can be mapped to host memory
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
// Allocate host memory
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory);
assert(!err);
// Bind allocated image for use
err = vkBindImageMemory(device, mappableImage, mappableMemory, 0);
assert(!err);
// Get sub resource layout
// Mip map count, array layer, etc.
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
// Get sub resources layout
// Includes row pitch, size offsets, etc.
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
assert(!err);
// Map image memory
err = vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data);
assert(!err);
// Copy image data into memory
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
vkUnmapMemory(device, mappableMemory);
// Linear tiled images don't need to be staged
// and can be directly used as textures
texture.image = mappableImage;
texture.deviceMemory = mappableMemory;
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Setup image memory barrier
vkTools::setImageLayout(
setupCmdBuffer,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
texture.imageLayout);
}
flushSetupCommandBuffer();
// Create sampler
// In Vulkan textures are accessed by samplers
// This separates all the sampling information from the
// texture data
// This means you could have multiple sampler objects
// for the same texture with different settings
// Similar to the samplers available with OpenGL 3.3
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
// Max level-of-detail should match mip level count
sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f;
// Enable anisotropic filtering
sampler.maxAnisotropy = 8;
sampler.anisotropyEnable = VK_TRUE;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &texture.sampler);
assert(!err);
// Create image view
// Textures are not directly accessed by the shaders and
// are abstracted by image views containing additional
// information and sub resource ranges
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
// Linear tiling usually won't support mip maps
// Only set mip map count if optimal tiling is used
view.subresourceRange.levelCount = (useStaging) ? texture.mipLevels : 1;
view.image = texture.image;
err = vkCreateImageView(device, &view, nullptr, &texture.view);
assert(!err);
}
// Free staging resources used while creating a texture
void destroyTextureImage(struct Texture texture)
{
vkDestroyImage(device, texture.image, nullptr);
vkFreeMemory(device, texture.deviceMemory, nullptr);
}
void initVulkan()
{
VulkanAndroidExampleBase::initVulkan();
loadTexture(
"textures/vulkan_android_robot.ktx",
VK_FORMAT_R8G8B8A8_UNORM,
false);
prepareVertices();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
state.zoom = -5.0f;
state.rotation = glm::vec3();
prepared = true;
}
void cleanupVulkan()
{
prepared = false;
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyBuffer(device, vertices.buf, nullptr);
vkFreeMemory(device, vertices.mem, nullptr);
vkDestroyBuffer(device, indices.buf, nullptr);
vkFreeMemory(device, indices.mem, nullptr);
vkDestroyBuffer(device, uniformDataVS.buffer, nullptr);
vkFreeMemory(device, uniformDataVS.memory, nullptr);
destroyTextureImage(texture);
VulkanExample::cleanUpVulkan();
}
void prepareVertices()
{
// Setup vertices
std::vector<Vertex> vertexBuffer;
vertexBuffer.push_back({ { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f } });
vertexBuffer.push_back({ { -1.0f, 1.0f, 0.0f },{ 0.0f, 1.0f } });
vertexBuffer.push_back({ { -1.0f, -1.0f, 0.0f },{ 0.0f, 0.0f } });
vertexBuffer.push_back({ { 1.0f, -1.0f, 0.0f },{ 1.0f, 0.0f } });
int vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
// Setup indices
std::vector<uint32_t> indexBuffer;
indexBuffer.push_back(0);
indexBuffer.push_back(1);
indexBuffer.push_back(2);
indexBuffer.push_back(2);
indexBuffer.push_back(3);
indexBuffer.push_back(0);
int indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
VkMemoryAllocateInfo memAlloc = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.pNext = NULL;
memAlloc.allocationSize = 0;
memAlloc.memoryTypeIndex = 0;
VkMemoryRequirements memReqs;
VkResult err;
void *data;
// Generate vertex buffer
// Setup
VkBufferCreateInfo bufInfo = {};
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufInfo.pNext = NULL;
bufInfo.size = vertexBufferSize;
bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
bufInfo.flags = 0;
// Copy vertex data to VRAM
memset(&vertices, 0, sizeof(vertices));
err = vkCreateBuffer(device, &bufInfo, nullptr, &vertices.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, vertices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
vkAllocateMemory(device, &memAlloc, nullptr, &vertices.mem);
assert(!err);
err = vkMapMemory(device, vertices.mem, 0, memAlloc.allocationSize, 0, &data);
assert(!err);
memcpy(data, vertexBuffer.data(), vertexBufferSize);
vkUnmapMemory(device, vertices.mem);
assert(!err);
err = vkBindBufferMemory(device, vertices.buf, vertices.mem, 0);
assert(!err);
// Generate index buffer
// Setup
VkBufferCreateInfo indexbufferInfo = {};
indexbufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
indexbufferInfo.pNext = NULL;
indexbufferInfo.size = indexBufferSize;
indexbufferInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
indexbufferInfo.flags = 0;
// Copy index data to VRAM
memset(&indices, 0, sizeof(indices));
err = vkCreateBuffer(device, &bufInfo, nullptr, &indices.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, indices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &indices.mem);
assert(!err);
err = vkMapMemory(device, indices.mem, 0, indexBufferSize, 0, &data);
assert(!err);
memcpy(data, indexBuffer.data(), indexBufferSize);
vkUnmapMemory(device, indices.mem);
err = vkBindBufferMemory(device, indices.buf, indices.mem, 0);
assert(!err);
indices.count = indexBuffer.size();
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(2);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : UV
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Assign to vertex buffer
vertices.inputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertices.inputState.pNext = NULL;
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void updateUniformBuffers()
{
// Update matrices
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, state.zoom));
uboVS.model = viewMatrix;
uboVS.model = glm::rotate(uboVS.model, glm::radians(state.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(state.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(state.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
// Map uniform buffer and update it
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformDataVS.memory);
assert(!err);
}
void prepareUniformBuffers()
{
// Prepare and initialize uniform buffer containing shader uniforms
VkMemoryRequirements memReqs;
// Vertex shader uniform buffer block
VkBufferCreateInfo bufferInfo = {};
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.pNext = NULL;
allocInfo.allocationSize = 0;
allocInfo.memoryTypeIndex = 0;
VkResult err;
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = sizeof(uboVS);
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
// Create a new buffer
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataVS.buffer);
assert(!err);
// Get memory requirements including size, alignment and memory type
vkGetBufferMemoryRequirements(device, uniformDataVS.buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
// Gets the appropriate memory type for this type of buffer allocation
// Only memory types that are visible to the host
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex);
// Allocate memory for the uniform buffer
err = vkAllocateMemory(device, &allocInfo, nullptr, &(uniformDataVS.memory));
assert(!err);
// Bind memory to buffer
err = vkBindBufferMemory(device, uniformDataVS.buffer, uniformDataVS.memory, 0);
assert(!err);
// Store information in the uniform's descriptor
uniformDataVS.descriptor.buffer = uniformDataVS.buffer;
uniformDataVS.descriptor.offset = 0;
uniformDataVS.descriptor.range = sizeof(uboVS);
updateUniformBuffers();
}
void preparePipelines()
{
VkResult err;
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables;
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader("shaders/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("shaders/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
assert(!err);
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes;
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1));
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1));
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
setLayoutBindings.push_back(
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0));
setLayoutBindings.push_back(
// Binding 1 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1));
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
// Image descriptor for the color map texture
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
texture.sampler,
texture.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.push_back(
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformDataVS.descriptor));
writeDescriptorSets.push_back(
// Binding 1 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor));
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufInfo.pNext = NULL;
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = {};
renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassBeginInfo.pNext = NULL;
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
// Update dynamic viewport state
VkViewport viewport = {};
viewport.height = (float)height;
viewport.width = (float)width;
viewport.minDepth = (float) 0.0f;
viewport.maxDepth = (float) 1.0f;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
// Update dynamic scissor state
VkRect2D scissor = {};
scissor.extent.width = width;
scissor.extent.height = height;
scissor.offset.x = 0;
scissor.offset.y = 0;
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Bind descriptor sets describing shader binding points
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
// Bind the rendering pipeline (including the shaders)
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
// Bind triangle vertices
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertices.buf, offsets);
// Bind triangle indices
vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buf, 0, VK_INDEX_TYPE_UINT32);
// Draw indexed triangle
vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 1);
vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
VkPipelineStageFlags pipelineStages = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &semaphores.presentComplete;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
submitInfo.pWaitDstStageMask = &pipelineStages;
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &semaphores.submitSignal;
// Submit to the graphics queue
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
// Present the current buffer to the swap chain
// This will display the image
err = swapChain.queuePresent(queue, currentBuffer, semaphores.submitSignal);
assert(!err);
}
};
static int32_t handleInput(struct android_app* app, AInputEvent* event)
{
struct VulkanExample* vulkanExample = (struct VulkanExample*)app->userData;
if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION)
{
// todo
return 1;
}
return 0;
}
static void handleCommand(struct android_app* app, int32_t cmd)
{
VulkanExample* vulkanExample = (VulkanExample*)app->userData;
switch (cmd)
{
case APP_CMD_SAVE_STATE:
vulkanExample->app->savedState = malloc(sizeof(struct saved_state));
*((struct saved_state*)vulkanExample->app->savedState) = vulkanExample->state;
vulkanExample->app->savedStateSize = sizeof(struct saved_state);
break;
case APP_CMD_INIT_WINDOW:
if (vulkanExample->app->window != NULL)
{
vulkanExample->initVulkan();
assert(vulkanExample->prepared);
}
break;
case APP_CMD_LOST_FOCUS:
vulkanExample->animating = 0;
break;
}
}
/**
* This is the main entry point of a native application that is using
* android_native_app_glue. It runs in its own thread, with its own
* event loop for receiving input events and doing other things.
*/
void android_main(struct android_app* state)
{
VulkanExample *engine = new VulkanExample();
//memset(&engine, 0, sizeof(engine));
state->userData = engine;
state->onAppCmd = handleCommand;
state->onInputEvent = handleInput;
engine->app = state;
engine->animating = 1;
// loop waiting for stuff to do.
while (1)
{
// Read all pending events.
int ident;
int events;
struct android_poll_source* source;
while ((ident = ALooper_pollAll(engine->animating ? 0 : -1, NULL, &events, (void**)&source)) >= 0)
{
if (source != NULL)
{
source->process(state, source);
}
if (state->destroyRequested != 0)
{
engine->cleanupVulkan();
return;
}
}
// Render frame
if (engine->prepared)
{
if (engine->animating)
{
// Update rotation
engine->state.rotation.y += 0.5f;
if (engine->state.rotation.y > 360.0f)
{
engine->state.rotation.y -= 360.0f;
}
engine->updateUniformBuffers();
}
engine->draw();
}
}
}