604 lines
27 KiB
C++
604 lines
27 KiB
C++
/*
|
|
* Vulkan Example - Hardware accelerated ray tracing intersection shader samples
|
|
*
|
|
* Copyright (C) 2023 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This sample uses intersection shaders for doing prodcedural ray traced geometry
|
|
* Instead of passing actual geometry, this samples only passes bounding boxes and sphere descriptions
|
|
* The bounding boxes are used for the ray traversal and the sphere intersections are done
|
|
* within the intersection shader
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include "VulkanRaytracingSample.h"
|
|
|
|
class VulkanExample : public VulkanRaytracingSample
|
|
{
|
|
public:
|
|
AccelerationStructure bottomLevelAS;
|
|
AccelerationStructure topLevelAS;
|
|
|
|
std::vector<VkRayTracingShaderGroupCreateInfoKHR> shaderGroups{};
|
|
struct ShaderBindingTables {
|
|
ShaderBindingTable raygen;
|
|
ShaderBindingTable miss;
|
|
ShaderBindingTable hit;
|
|
} shaderBindingTables;
|
|
|
|
struct UniformData {
|
|
glm::mat4 viewInverse;
|
|
glm::mat4 projInverse;
|
|
glm::vec4 lightPos;
|
|
} uniformData;
|
|
vks::Buffer ubo;
|
|
|
|
VkPipeline pipeline;
|
|
VkPipelineLayout pipelineLayout;
|
|
VkDescriptorSet descriptorSet;
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
|
|
struct Sphere {
|
|
glm::vec3 center;
|
|
float radius;
|
|
glm::vec4 color;
|
|
};
|
|
|
|
struct AABB {
|
|
glm::vec3 min;
|
|
glm::vec3 max;
|
|
};
|
|
|
|
vks::Buffer spheresBuffer;
|
|
vks::Buffer aabbsBuffer;
|
|
uint32_t aabbCount{ 0 };
|
|
|
|
// This sample is derived from an extended base class that saves most of the ray tracing setup boiler plate
|
|
VulkanExample() : VulkanRaytracingSample()
|
|
{
|
|
title = "Ray tracing intersection shaders";
|
|
timerSpeed *= 0.25f;
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
|
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
|
|
camera.setTranslation(glm::vec3(0.0f, 0.0f, -10.0f));
|
|
enableExtensions();
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
deleteStorageImage();
|
|
deleteAccelerationStructure(bottomLevelAS);
|
|
deleteAccelerationStructure(topLevelAS);
|
|
shaderBindingTables.raygen.destroy();
|
|
shaderBindingTables.miss.destroy();
|
|
shaderBindingTables.hit.destroy();
|
|
ubo.destroy();
|
|
}
|
|
|
|
void createBuffers()
|
|
{
|
|
// We'll be using two buffers to describe the procedural geometry
|
|
|
|
// A buffer with sphere descriptions (center, radius, material) that'll be passed to the ray tracing shaders as a shader storage buffer object
|
|
std::vector<Sphere> spheres{};
|
|
spheres.push_back({ glm::vec3(0.0f), 2.5f, glm::vec4(1.0f, 0.0f, 0.0f, 1.0f) });
|
|
spheres.push_back({ glm::vec3(2.0f), 1.5f, glm::vec4(1.0f, 1.0f, 0.0f, 1.0f) });
|
|
|
|
// A buffer with the (axis aligned) bounding boxes of our sphere, which is used during the ray tracing traversal for hit detection
|
|
std::vector<AABB> aabbs{};
|
|
for (auto& sphere : spheres) {
|
|
aabbs.push_back({ sphere.center - glm::vec3(sphere.radius), sphere.center + glm::vec3(sphere.radius) });
|
|
}
|
|
aabbCount = static_cast<uint32_t>(aabbs.size());
|
|
|
|
// Copy the buffer to the device for performance reasons
|
|
vks::Buffer stagingBuffer{};
|
|
VkBufferUsageFlags usageFlags = VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
// Spheres
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, sizeof(Sphere)* spheres.size(), spheres.data()));
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &spheresBuffer, sizeof(Sphere)* spheres.size()));
|
|
vulkanDevice->copyBuffer(&stagingBuffer, &spheresBuffer, queue);
|
|
stagingBuffer.destroy();
|
|
|
|
// AABBs
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, sizeof(AABB)* aabbs.size(), aabbs.data()));
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &aabbsBuffer, sizeof(AABB)* aabbs.size()));
|
|
vulkanDevice->copyBuffer(&stagingBuffer, &aabbsBuffer, queue);
|
|
stagingBuffer.destroy();
|
|
}
|
|
|
|
/*
|
|
Create the bottom level acceleration structure only containing axis aligned bounding boxes for our procedural geometry
|
|
*/
|
|
void createBottomLevelAccelerationStructure()
|
|
{
|
|
// Build
|
|
VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR();
|
|
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
|
|
// Instead of providing actual geometry (e.g. triangles), we only provide the axis aligned bounding boxes (AABBs) of the spheres
|
|
// The data for the actual spheres is passed elsewhere as a shader storage buffer object
|
|
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_AABBS_KHR;
|
|
accelerationStructureGeometry.geometry.aabbs.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_AABBS_DATA_KHR;
|
|
accelerationStructureGeometry.geometry.aabbs.data.deviceAddress = getBufferDeviceAddress(aabbsBuffer.buffer);
|
|
accelerationStructureGeometry.geometry.aabbs.stride = sizeof(AABB);
|
|
|
|
// Get size info
|
|
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
|
|
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
|
|
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
|
|
accelerationStructureBuildGeometryInfo.geometryCount = 1;
|
|
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
|
|
|
|
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR();
|
|
vkGetAccelerationStructureBuildSizesKHR(
|
|
device,
|
|
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
|
|
&accelerationStructureBuildGeometryInfo,
|
|
&aabbCount,
|
|
&accelerationStructureBuildSizesInfo);
|
|
|
|
createAccelerationStructure(bottomLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR, accelerationStructureBuildSizesInfo);
|
|
|
|
// Create a small scratch buffer used during build of the bottom level acceleration structure
|
|
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
|
|
|
|
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
|
|
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
|
|
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
|
|
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
|
|
accelerationBuildGeometryInfo.dstAccelerationStructure = bottomLevelAS.handle;
|
|
accelerationBuildGeometryInfo.geometryCount = 1;
|
|
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
|
|
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
|
|
|
|
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
|
|
accelerationStructureBuildRangeInfo.primitiveCount = aabbCount;
|
|
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
|
|
|
|
// Build the acceleration structure on the device via a one-time command buffer submission
|
|
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
|
|
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
vkCmdBuildAccelerationStructuresKHR(
|
|
commandBuffer,
|
|
1,
|
|
&accelerationBuildGeometryInfo,
|
|
accelerationBuildStructureRangeInfos.data());
|
|
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
|
|
|
|
deleteScratchBuffer(scratchBuffer);
|
|
}
|
|
|
|
/*
|
|
The top level acceleration structure contains the scene's object instances
|
|
*/
|
|
void createTopLevelAccelerationStructure()
|
|
{
|
|
VkTransformMatrixKHR transformMatrix = {
|
|
1.0f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, 1.0f, 0.0f, 0.0f,
|
|
0.0f, 0.0f, 1.0f, 0.0f };
|
|
|
|
VkAccelerationStructureInstanceKHR instance{};
|
|
instance.transform = transformMatrix;
|
|
instance.instanceCustomIndex = 0;
|
|
instance.mask = 0xFF;
|
|
instance.instanceShaderBindingTableRecordOffset = 0;
|
|
instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
|
|
instance.accelerationStructureReference = bottomLevelAS.deviceAddress;
|
|
|
|
// Buffer for instance data
|
|
vks::Buffer instancesBuffer;
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&instancesBuffer,
|
|
sizeof(VkAccelerationStructureInstanceKHR),
|
|
&instance));
|
|
|
|
VkDeviceOrHostAddressConstKHR instanceDataDeviceAddress{};
|
|
instanceDataDeviceAddress.deviceAddress = getBufferDeviceAddress(instancesBuffer.buffer);
|
|
|
|
VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR();
|
|
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR;
|
|
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
|
|
accelerationStructureGeometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR;
|
|
accelerationStructureGeometry.geometry.instances.arrayOfPointers = VK_FALSE;
|
|
accelerationStructureGeometry.geometry.instances.data = instanceDataDeviceAddress;
|
|
|
|
// Get size info
|
|
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
|
|
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
|
|
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
|
|
accelerationStructureBuildGeometryInfo.geometryCount = 1;
|
|
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
|
|
|
|
uint32_t primitive_count = 1;
|
|
|
|
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR();
|
|
vkGetAccelerationStructureBuildSizesKHR(
|
|
device,
|
|
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
|
|
&accelerationStructureBuildGeometryInfo,
|
|
&primitive_count,
|
|
&accelerationStructureBuildSizesInfo);
|
|
|
|
createAccelerationStructure(topLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, accelerationStructureBuildSizesInfo);
|
|
|
|
// Create a small scratch buffer used during build of the top level acceleration structure
|
|
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
|
|
|
|
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
|
|
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
|
|
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
|
|
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
|
|
accelerationBuildGeometryInfo.dstAccelerationStructure = topLevelAS.handle;
|
|
accelerationBuildGeometryInfo.geometryCount = 1;
|
|
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
|
|
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
|
|
|
|
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
|
|
accelerationStructureBuildRangeInfo.primitiveCount = 1;
|
|
accelerationStructureBuildRangeInfo.primitiveOffset = 0;
|
|
accelerationStructureBuildRangeInfo.firstVertex = 0;
|
|
accelerationStructureBuildRangeInfo.transformOffset = 0;
|
|
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
|
|
|
|
// Build the acceleration structure on the device via a one-time command buffer submission
|
|
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
|
|
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
vkCmdBuildAccelerationStructuresKHR(
|
|
commandBuffer,
|
|
1,
|
|
&accelerationBuildGeometryInfo,
|
|
accelerationBuildStructureRangeInfos.data());
|
|
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
|
|
|
|
deleteScratchBuffer(scratchBuffer);
|
|
instancesBuffer.destroy();
|
|
}
|
|
|
|
|
|
/*
|
|
Create the Shader Binding Tables that binds the programs and top-level acceleration structure
|
|
|
|
SBT Layout used in this sample:
|
|
|
|
/-----------\
|
|
| raygen |
|
|
|-----------|
|
|
| miss |
|
|
|-----------|
|
|
| hit + int |
|
|
\-----------/
|
|
|
|
*/
|
|
void createShaderBindingTables() {
|
|
const uint32_t handleSize = rayTracingPipelineProperties.shaderGroupHandleSize;
|
|
const uint32_t handleSizeAligned = vks::tools::alignedSize(rayTracingPipelineProperties.shaderGroupHandleSize, rayTracingPipelineProperties.shaderGroupHandleAlignment);
|
|
const uint32_t groupCount = static_cast<uint32_t>(shaderGroups.size());
|
|
const uint32_t sbtSize = groupCount * handleSizeAligned;
|
|
|
|
std::vector<uint8_t> shaderHandleStorage(sbtSize);
|
|
VK_CHECK_RESULT(vkGetRayTracingShaderGroupHandlesKHR(device, pipeline, 0, groupCount, sbtSize, shaderHandleStorage.data()));
|
|
|
|
createShaderBindingTable(shaderBindingTables.raygen, 1);
|
|
createShaderBindingTable(shaderBindingTables.miss, 1);
|
|
createShaderBindingTable(shaderBindingTables.hit, 1);
|
|
|
|
// Copy handles
|
|
memcpy(shaderBindingTables.raygen.mapped, shaderHandleStorage.data(), handleSize);
|
|
memcpy(shaderBindingTables.miss.mapped, shaderHandleStorage.data() + handleSizeAligned, handleSize);
|
|
memcpy(shaderBindingTables.hit.mapped, shaderHandleStorage.data() + handleSizeAligned * 2, handleSize);
|
|
}
|
|
|
|
/*
|
|
Create the descriptor sets used for the ray tracing dispatch
|
|
*/
|
|
void createDescriptorSets()
|
|
{
|
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
|
{ VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1 },
|
|
{ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1 },
|
|
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1 },
|
|
{ VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2 }
|
|
};
|
|
VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, nullptr, &descriptorPool));
|
|
|
|
VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSet));
|
|
|
|
VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo = vks::initializers::writeDescriptorSetAccelerationStructureKHR();
|
|
descriptorAccelerationStructureInfo.accelerationStructureCount = 1;
|
|
descriptorAccelerationStructureInfo.pAccelerationStructures = &topLevelAS.handle;
|
|
|
|
VkWriteDescriptorSet accelerationStructureWrite{};
|
|
accelerationStructureWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
// The specialized acceleration structure descriptor has to be chained
|
|
accelerationStructureWrite.pNext = &descriptorAccelerationStructureInfo;
|
|
accelerationStructureWrite.dstSet = descriptorSet;
|
|
accelerationStructureWrite.dstBinding = 0;
|
|
accelerationStructureWrite.descriptorCount = 1;
|
|
accelerationStructureWrite.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
|
|
|
|
// We pass the sphere descriptions as shader storage buffer, so the ray tracing shaders can source properties from it
|
|
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
|
|
VkDescriptorBufferInfo spheresBufferDescriptor{ spheresBuffer.buffer, 0, VK_WHOLE_SIZE };
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
|
// Binding 0: Top level acceleration structure
|
|
accelerationStructureWrite,
|
|
// Binding 1: Ray tracing result image
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor),
|
|
// Binding 2: Uniform data
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &ubo.descriptor),
|
|
// Binding 3: Spheres buffer
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 3, &spheresBufferDescriptor),
|
|
};
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, VK_NULL_HANDLE);
|
|
}
|
|
|
|
/*
|
|
Create our ray tracing pipeline
|
|
*/
|
|
void createRayTracingPipeline()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
// Binding 0: Acceleration structure
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, 0),
|
|
// Binding 1: Storage image
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_RAYGEN_BIT_KHR, 1),
|
|
// Binding 2: Uniform buffer
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR, 2),
|
|
// Binding 3: Spheres buffer
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR, 3),
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCI, nullptr, &pipelineLayout));
|
|
|
|
/*
|
|
Setup ray tracing shader groups
|
|
*/
|
|
std::vector<VkPipelineShaderStageCreateInfo> shaderStages;
|
|
|
|
// Ray generation group
|
|
{
|
|
shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/raygen.rgen.spv", VK_SHADER_STAGE_RAYGEN_BIT_KHR));
|
|
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
|
|
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
|
|
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
|
|
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
|
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
|
|
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
|
|
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
|
|
shaderGroups.push_back(shaderGroup);
|
|
}
|
|
|
|
// Miss group
|
|
{
|
|
shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/miss.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR));
|
|
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
|
|
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
|
|
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
|
|
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
|
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
|
|
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
|
|
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
|
|
shaderGroups.push_back(shaderGroup);
|
|
}
|
|
|
|
// Closest hit group (procedural)
|
|
{
|
|
shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/closesthit.rchit.spv", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR));
|
|
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
|
|
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
|
|
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR;
|
|
shaderGroup.generalShader = VK_SHADER_UNUSED_KHR;
|
|
shaderGroup.closestHitShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
|
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
|
|
// This group als uses an intersection shader for proedural geometry (see interseciton.rint for details)
|
|
shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/intersection.rint.spv", VK_SHADER_STAGE_INTERSECTION_BIT_KHR));
|
|
shaderGroup.intersectionShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
|
shaderGroups.push_back(shaderGroup);
|
|
}
|
|
|
|
VkRayTracingPipelineCreateInfoKHR rayTracingPipelineCI = vks::initializers::rayTracingPipelineCreateInfoKHR();
|
|
rayTracingPipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
rayTracingPipelineCI.pStages = shaderStages.data();
|
|
rayTracingPipelineCI.groupCount = static_cast<uint32_t>(shaderGroups.size());
|
|
rayTracingPipelineCI.pGroups = shaderGroups.data();
|
|
rayTracingPipelineCI.maxPipelineRayRecursionDepth = 2;
|
|
rayTracingPipelineCI.layout = pipelineLayout;
|
|
VK_CHECK_RESULT(vkCreateRayTracingPipelinesKHR(device, VK_NULL_HANDLE, VK_NULL_HANDLE, 1, &rayTracingPipelineCI, nullptr, &pipeline));
|
|
}
|
|
|
|
/*
|
|
Create the uniform buffer used to pass matrices to the ray tracing ray generation shader
|
|
*/
|
|
void createUniformBuffer()
|
|
{
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&ubo,
|
|
sizeof(uniformData),
|
|
&uniformData));
|
|
VK_CHECK_RESULT(ubo.map());
|
|
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
/*
|
|
If the window has been resized, we need to recreate the storage image and it's descriptor
|
|
*/
|
|
void handleResize()
|
|
{
|
|
// Recreate image
|
|
createStorageImage(swapChain.colorFormat, { width, height, 1 });
|
|
// Update descriptor
|
|
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
|
|
VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor);
|
|
vkUpdateDescriptorSets(device, 1, &resultImageWrite, 0, VK_NULL_HANDLE);
|
|
resized = false;
|
|
}
|
|
|
|
/*
|
|
Command buffer generation
|
|
*/
|
|
void buildCommandBuffers()
|
|
{
|
|
if (resized)
|
|
{
|
|
handleResize();
|
|
}
|
|
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkImageSubresourceRange subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
/*
|
|
Dispatch the ray tracing commands
|
|
*/
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline);
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0);
|
|
|
|
VkStridedDeviceAddressRegionKHR emptySbtEntry = {};
|
|
vkCmdTraceRaysKHR(
|
|
drawCmdBuffers[i],
|
|
&shaderBindingTables.raygen.stridedDeviceAddressRegion,
|
|
&shaderBindingTables.miss.stridedDeviceAddressRegion,
|
|
&shaderBindingTables.hit.stridedDeviceAddressRegion,
|
|
&emptySbtEntry,
|
|
width,
|
|
height,
|
|
1);
|
|
|
|
/*
|
|
Copy ray tracing output to swap chain image
|
|
*/
|
|
|
|
// Prepare current swap chain image as transfer destination
|
|
vks::tools::setImageLayout(
|
|
drawCmdBuffers[i],
|
|
swapChain.images[i],
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
subresourceRange);
|
|
|
|
// Prepare ray tracing output image as transfer source
|
|
vks::tools::setImageLayout(
|
|
drawCmdBuffers[i],
|
|
storageImage.image,
|
|
VK_IMAGE_LAYOUT_GENERAL,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
subresourceRange);
|
|
|
|
VkImageCopy copyRegion{};
|
|
copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
|
|
copyRegion.srcOffset = { 0, 0, 0 };
|
|
copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
|
|
copyRegion.dstOffset = { 0, 0, 0 };
|
|
copyRegion.extent = { width, height, 1 };
|
|
vkCmdCopyImage(drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region);
|
|
|
|
// Transition swap chain image back for presentation
|
|
vks::tools::setImageLayout(
|
|
drawCmdBuffers[i],
|
|
swapChain.images[i],
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
|
|
subresourceRange);
|
|
|
|
// Transition ray tracing output image back to general layout
|
|
vks::tools::setImageLayout(
|
|
drawCmdBuffers[i],
|
|
storageImage.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_GENERAL,
|
|
subresourceRange);
|
|
|
|
drawUI(drawCmdBuffers[i], frameBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
uniformData.projInverse = glm::inverse(camera.matrices.perspective);
|
|
uniformData.viewInverse = glm::inverse(camera.matrices.view);
|
|
uniformData.lightPos = glm::vec4(cos(glm::radians(timer * 360.0f)) * 40.0f, -50.0f + sin(glm::radians(timer * 360.0f)) * 20.0f, 25.0f + sin(glm::radians(timer * 360.0f)) * 5.0f, 0.0f);
|
|
// Pass the vertex size to the shader for unpacking vertices
|
|
//uniformData.vertexSize = sizeof(vkglTF::Vertex);
|
|
memcpy(ubo.mapped, &uniformData, sizeof(uniformData));
|
|
}
|
|
|
|
void getEnabledFeatures()
|
|
{
|
|
// Enable features required for ray tracing using feature chaining via pNext
|
|
enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES;
|
|
enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE;
|
|
|
|
enabledRayTracingPipelineFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR;
|
|
enabledRayTracingPipelineFeatures.rayTracingPipeline = VK_TRUE;
|
|
enabledRayTracingPipelineFeatures.pNext = &enabledBufferDeviceAddresFeatures;
|
|
|
|
enabledAccelerationStructureFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR;
|
|
enabledAccelerationStructureFeatures.accelerationStructure = VK_TRUE;
|
|
enabledAccelerationStructureFeatures.pNext = &enabledRayTracingPipelineFeatures;
|
|
|
|
deviceCreatepNextChain = &enabledAccelerationStructureFeatures;
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanRaytracingSample::prepare();
|
|
|
|
createBuffers();
|
|
|
|
// Create the acceleration structures used to render the ray traced scene
|
|
createBottomLevelAccelerationStructure();
|
|
createTopLevelAccelerationStructure();
|
|
|
|
createStorageImage(swapChain.colorFormat, { width, height, 1 });
|
|
createUniformBuffer();
|
|
createRayTracingPipeline();
|
|
createShaderBindingTables();
|
|
createDescriptorSets();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
if (!paused || camera.updated)
|
|
updateUniformBuffers();
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|