procedural-3d-engine/vulkanscene/vulkanscene.cpp
2016-04-30 12:02:48 +02:00

668 lines
No EOL
20 KiB
C++

/*
* Vulkan Demo Scene
*
* Don't take this a an example, it's more of a personal playground
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* Note : Different license than the other examples!
*
* This code is licensed under the Mozilla Public License Version 2.0 (http://opensource.org/licenses/MPL-2.0)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/matrix_inverse.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
struct DemoMeshes
{
std::vector<std::string> names{ "logos", "background", "models", "skybox" };
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
VkPipeline pipeline;
VulkanMeshLoader* logos;
VulkanMeshLoader* background;
VulkanMeshLoader* models;
VulkanMeshLoader* skybox;
} demoMeshes;
std::vector<VulkanMeshLoader*> meshes;
struct {
vkTools::UniformData meshVS;
} uniformData;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 normal;
glm::mat4 view;
glm::vec4 lightPos;
} uboVS;
struct
{
vkTools::VulkanTexture skybox;
} textures;
struct {
VkPipeline logos;
VkPipeline models;
VkPipeline skybox;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
glm::vec4 lightPos = glm::vec4(1.0f, 2.0f, 0.0f, 0.0f);
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
width = 1280;
height = 720;
zoom = -3.75f;
rotationSpeed = 0.5f;
rotation = glm::vec3(15.0f, 0.f, 0.0f);
title = "Vulkan Demo Scene - © 2016 by Sascha Willems";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.logos, nullptr);
vkDestroyPipeline(device, pipelines.models, nullptr);
vkDestroyPipeline(device, pipelines.skybox, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkTools::destroyUniformData(device, &uniformData.meshVS);
for (auto& mesh : meshes)
{
vkDestroyBuffer(device, mesh->vertexBuffer.buf, nullptr);
vkFreeMemory(device, mesh->vertexBuffer.mem, nullptr);
vkDestroyBuffer(device, mesh->indexBuffer.buf, nullptr);
vkFreeMemory(device, mesh->indexBuffer.mem, nullptr);
}
textureLoader->destroyTexture(textures.skybox);
delete(demoMeshes.logos);
delete(demoMeshes.background);
delete(demoMeshes.models);
delete(demoMeshes.skybox);
}
void loadTextures()
{
textureLoader->loadCubemap(
getAssetPath() + "textures/cubemap_vulkan.ktx",
VK_FORMAT_R8G8B8A8_UNORM,
&textures.skybox);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
VkDeviceSize offsets[1] = { 0 };
for (auto& mesh : meshes)
{
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, mesh->pipeline);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &mesh->vertexBuffer.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], mesh->indexBuffer.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], mesh->indexBuffer.count, 1, 0, 0, 0);
}
vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
}
void prepareVertices()
{
struct Vertex {
float pos[3];
float normal[3];
float uv[2];
float color[3];
};
// Load meshes for demos scene
demoMeshes.logos = new VulkanMeshLoader();
demoMeshes.background = new VulkanMeshLoader();
demoMeshes.models = new VulkanMeshLoader();
demoMeshes.skybox = new VulkanMeshLoader();
#if defined(__ANDROID__)
demoMeshes.logos->assetManager = androidApp->activity->assetManager;
demoMeshes.background->assetManager = androidApp->activity->assetManager;
demoMeshes.models->assetManager = androidApp->activity->assetManager;
demoMeshes.skybox->assetManager = androidApp->activity->assetManager;
#endif
demoMeshes.logos->LoadMesh(getAssetPath() + "models/vulkanscenelogos.dae");
demoMeshes.background->LoadMesh(getAssetPath() + "models/vulkanscenebackground.dae");
demoMeshes.models->LoadMesh(getAssetPath() + "models/vulkanscenemodels.dae");
demoMeshes.skybox->LoadMesh(getAssetPath() + "models/cube.obj");
std::vector<VulkanMeshLoader*> meshList;
meshList.push_back(demoMeshes.skybox); // skybox first because of depth writes
meshList.push_back(demoMeshes.logos);
meshList.push_back(demoMeshes.background);
meshList.push_back(demoMeshes.models);
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
// todo : Use mesh function for loading
float scale = 1.0f;
for (auto& mesh : meshList)
{
// Generate vertex buffer (pos, normal, uv, color)
std::vector<Vertex> vertexBuffer;
for (int m = 0; m < mesh->m_Entries.size(); m++)
{
for (int i = 0; i < mesh->m_Entries[m].Vertices.size(); i++) {
glm::vec3 pos = mesh->m_Entries[m].Vertices[i].m_pos * scale;
glm::vec3 normal = mesh->m_Entries[m].Vertices[i].m_normal;
glm::vec2 uv = mesh->m_Entries[m].Vertices[i].m_tex;
glm::vec3 col = mesh->m_Entries[m].Vertices[i].m_color;
Vertex vert = {
{ pos.x, pos.y, pos.z },
{ normal.x, -normal.y, normal.z },
{ uv.s, uv.t },
{ col.r, col.g, col.b }
};
// Offset Vulkan meshes
// todo : center before export
if (mesh != demoMeshes.skybox)
{
vert.pos[1] += 1.15f;
}
vertexBuffer.push_back(vert);
}
}
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
vertexBuffer.size() * sizeof(Vertex),
vertexBuffer.data(),
&mesh->vertexBuffer.buf,
&mesh->vertexBuffer.mem);
uint32_t vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
std::vector<uint32_t> indexBuffer;
for (int m = 0; m < mesh->m_Entries.size(); m++)
{
int indexBase = indexBuffer.size();
for (int i = 0; i < mesh->m_Entries[m].Indices.size(); i++) {
indexBuffer.push_back(mesh->m_Entries[m].Indices[i] + indexBase);
}
}
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
indexBuffer.size() * sizeof(uint32_t),
indexBuffer.data(),
&mesh->indexBuffer.buf,
&mesh->indexBuffer.mem);
mesh->indexBuffer.count = indexBuffer.size();
meshes.push_back(mesh);
}
// Binding description
demoMeshes.bindingDescriptions.resize(1);
demoMeshes.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Location 0 : Position
demoMeshes.attributeDescriptions.resize(4);
demoMeshes.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
demoMeshes.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Texture coordinates
demoMeshes.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6);
// Location 3 : Color
demoMeshes.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
demoMeshes.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
demoMeshes.inputState.vertexBindingDescriptionCount = demoMeshes.bindingDescriptions.size();
demoMeshes.inputState.pVertexBindingDescriptions = demoMeshes.bindingDescriptions.data();
demoMeshes.inputState.vertexAttributeDescriptionCount = demoMeshes.attributeDescriptions.size();
demoMeshes.inputState.pVertexAttributeDescriptions = demoMeshes.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader color map image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
// Cube map image descriptor
VkDescriptorImageInfo texDescriptorCubeMap =
vkTools::initializers::descriptorImageInfo(
textures.skybox.sampler,
textures.skybox.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.meshVS.descriptor),
// Binding 1 : Fragment shader image sampler
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorCubeMap)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Pipeline for the meshes (armadillo, bunny, etc.)
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/vulkanscene/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/vulkanscene/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &demoMeshes.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.models);
assert(!err);
// Pipeline for the logos
shaderStages[0] = loadShader(getAssetPath() + "shaders/vulkanscene/logo.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/vulkanscene/logo.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.logos);
assert(!err);
// Pipeline for the sky sphere (todo)
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT; // Inverted culling
depthStencilState.depthWriteEnable = VK_FALSE; // No depth writes
shaderStages[0] = loadShader(getAssetPath() + "shaders/vulkanscene/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/vulkanscene/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skybox);
assert(!err);
// Assign pipelines
demoMeshes.logos->pipeline = pipelines.logos;
demoMeshes.models->pipeline = pipelines.models;
demoMeshes.background->pipeline = pipelines.models;
demoMeshes.skybox->pipeline = pipelines.skybox;
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVS),
&uboVS,
&uniformData.meshVS.buffer,
&uniformData.meshVS.memory,
&uniformData.meshVS.descriptor);
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
uboVS.view = glm::lookAt(
glm::vec3(0, 0, -zoom),
glm::vec3(0, 0, 0),
glm::vec3(0, 1, 0)
);
uboVS.model = glm::mat4();
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
uboVS.normal = glm::inverseTranspose(uboVS.view * uboVS.model);
uboVS.lightPos = lightPos;
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.meshVS.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.meshVS.memory);
}
void prepare()
{
VulkanExampleBase::prepare();
loadTextures();
prepareVertices();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
}
virtual void viewChanged()
{
updateUniformBuffers();
}
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
vulkanExample = new VulkanExample();
#if defined(_WIN32)
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
vulkanExample->renderLoop();
delete(vulkanExample);
#if !defined(__ANDROID__)
return 0;
#endif
}