procedural-3d-engine/examples/multisampling/multisampling.cpp

779 lines
28 KiB
C++

/*
* Vulkan Example - Multisampling using resolve attachments
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <vector>
#include <algorithm>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanBuffer.hpp"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
struct {
struct {
VkImage image;
VkImageView view;
VkDeviceMemory memory;
} color;
struct {
VkImage image;
VkImageView view;
VkDeviceMemory memory;
} depth;
} multisampleTarget;
class VulkanExample : public VulkanExampleBase
{
public:
bool useSampleShading = false;
VkSampleCountFlagBits sampleCount = VK_SAMPLE_COUNT_1_BIT;
struct {
vks::Texture2D colorMap;
} textures;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_COLOR,
});
struct {
vks::Model example;
} models;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
vks::Buffer uniformBuffer;
struct UBOVS {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, 5.0f, 1.0f);
} uboVS;
struct {
VkPipeline MSAA;
VkPipeline MSAASampleShading;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VkRenderPass uiRenderPass;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -7.5f;
zoomSpeed = 2.5f;
rotation = { 0.0f, -90.0f, 0.0f };
cameraPos = glm::vec3(2.5f, 2.5f, 0.0f);
title = "Multisampling";
settings.overlay = true;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.MSAA, nullptr);
vkDestroyPipeline(device, pipelines.MSAASampleShading, nullptr);
vkDestroyRenderPass(device, uiRenderPass, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
models.example.destroy();
// Destroy MSAA target
vkDestroyImage(device, multisampleTarget.color.image, nullptr);
vkDestroyImageView(device, multisampleTarget.color.view, nullptr);
vkFreeMemory(device, multisampleTarget.color.memory, nullptr);
vkDestroyImage(device, multisampleTarget.depth.image, nullptr);
vkDestroyImageView(device, multisampleTarget.depth.view, nullptr);
vkFreeMemory(device, multisampleTarget.depth.memory, nullptr);
textures.colorMap.destroy();
uniformBuffer.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Enable sample rate shading filtering if supported
if (deviceFeatures.sampleRateShading) {
enabledFeatures.sampleRateShading = VK_TRUE;
}
// Enable texture compression
if (deviceFeatures.textureCompressionBC) {
enabledFeatures.textureCompressionBC = VK_TRUE;
}
else if (deviceFeatures.textureCompressionASTC_LDR) {
enabledFeatures.textureCompressionASTC_LDR = VK_TRUE;
}
else if (deviceFeatures.textureCompressionETC2) {
enabledFeatures.textureCompressionETC2 = VK_TRUE;
}
}
// Creates a multi sample render target (image and view) that is used to resolve
// into the visible frame buffer target in the render pass
void setupMultisampleTarget()
{
// Check if device supports requested sample count for color and depth frame buffer
assert((deviceProperties.limits.framebufferColorSampleCounts >= sampleCount) && (deviceProperties.limits.framebufferDepthSampleCounts >= sampleCount));
// Color target
VkImageCreateInfo info = vks::initializers::imageCreateInfo();
info.imageType = VK_IMAGE_TYPE_2D;
info.format = swapChain.colorFormat;
info.extent.width = width;
info.extent.height = height;
info.extent.depth = 1;
info.mipLevels = 1;
info.arrayLayers = 1;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.samples = sampleCount;
// Image will only be used as a transient target
info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device, &info, nullptr, &multisampleTarget.color.image));
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, multisampleTarget.color.image, &memReqs);
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
memAlloc.allocationSize = memReqs.size;
// We prefer a lazily allocated memory type
// This means that the memory gets allocated when the implementation sees fit, e.g. when first using the images
VkBool32 lazyMemTypePresent;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &lazyMemTypePresent);
if (!lazyMemTypePresent)
{
// If this is not available, fall back to device local memory
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &multisampleTarget.color.memory));
vkBindImageMemory(device, multisampleTarget.color.image, multisampleTarget.color.memory, 0);
// Create image view for the MSAA target
VkImageViewCreateInfo viewInfo = vks::initializers::imageViewCreateInfo();
viewInfo.image = multisampleTarget.color.image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = swapChain.colorFormat;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImageView(device, &viewInfo, nullptr, &multisampleTarget.color.view));
// Depth target
info.imageType = VK_IMAGE_TYPE_2D;
info.format = depthFormat;
info.extent.width = width;
info.extent.height = height;
info.extent.depth = 1;
info.mipLevels = 1;
info.arrayLayers = 1;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.samples = sampleCount;
// Image will only be used as a transient target
info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device, &info, nullptr, &multisampleTarget.depth.image));
vkGetImageMemoryRequirements(device, multisampleTarget.depth.image, &memReqs);
memAlloc = vks::initializers::memoryAllocateInfo();
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &lazyMemTypePresent);
if (!lazyMemTypePresent)
{
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &multisampleTarget.depth.memory));
vkBindImageMemory(device, multisampleTarget.depth.image, multisampleTarget.depth.memory, 0);
// Create image view for the MSAA target
viewInfo.image = multisampleTarget.depth.image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = depthFormat;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImageView(device, &viewInfo, nullptr, &multisampleTarget.depth.view));
}
// Setup a render pass for using a multi sampled attachment
// and a resolve attachment that the msaa image is resolved
// to at the end of the render pass
void setupRenderPass()
{
// Overrides the virtual function of the base class
std::array<VkAttachmentDescription, 4> attachments = {};
// Multisampled attachment that we render to
attachments[0].format = swapChain.colorFormat;
attachments[0].samples = sampleCount;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
// This is the frame buffer attachment to where the multisampled image
// will be resolved to and which will be presented to the swapchain
attachments[1].format = swapChain.colorFormat;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
// Multisampled depth attachment we render to
attachments[2].format = depthFormat;
attachments[2].samples = sampleCount;
attachments[2].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[2].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[2].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[2].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[2].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[2].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
// Depth resolve attachment
attachments[3].format = depthFormat;
attachments[3].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[3].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[3].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[3].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[3].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[3].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[3].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = {};
colorReference.attachment = 0;
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthReference = {};
depthReference.attachment = 2;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
// Resolve attachment reference for the color attachment
VkAttachmentReference resolveReference = {};
resolveReference.attachment = 1;
resolveReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorReference;
// Pass our resolve attachments to the sub pass
subpass.pResolveAttachments = &resolveReference;
subpass.pDepthStencilAttachment = &depthReference;
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassInfo = vks::initializers::renderPassCreateInfo();
renderPassInfo.attachmentCount = attachments.size();
renderPassInfo.pAttachments = attachments.data();
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 2;
renderPassInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass));
// Create custom overlay render pass
colorReference.attachment = 1;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
subpass.pResolveAttachments = 0;
subpass.pDepthStencilAttachment = 0;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &uiRenderPass));
}
// Frame buffer attachments must match with render pass setup,
// so we need to adjust frame buffer creation to cover our
// multisample target
void setupFrameBuffer()
{
// Overrides the virtual function of the base class
std::array<VkImageView, 4> attachments;
setupMultisampleTarget();
attachments[0] = multisampleTarget.color.view;
// attachment[1] = swapchain image
attachments[2] = multisampleTarget.depth.view;
attachments[3] = depthStencil.view;
VkFramebufferCreateInfo frameBufferCreateInfo = {};
frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
frameBufferCreateInfo.pNext = NULL;
frameBufferCreateInfo.renderPass = renderPass;
frameBufferCreateInfo.attachmentCount = attachments.size();
frameBufferCreateInfo.pAttachments = attachments.data();
frameBufferCreateInfo.width = width;
frameBufferCreateInfo.height = height;
frameBufferCreateInfo.layers = 1;
// Create frame buffers for every swap chain image
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[1] = swapChain.buffers[i].view;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]));
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[3];
// Clear to a white background for higher contrast
clearValues[0].color = { { 1.0f, 1.0f, 1.0f, 1.0f } };
clearValues[1].color = { { 1.0f, 1.0f, 1.0f, 1.0f } };
clearValues[2].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 3;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, useSampleShading ? pipelines.MSAASampleShading : pipelines.MSAA);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.example.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.example.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], models.example.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
models.example.loadFromFile(getAssetPath() + "models/voyager/voyager.dae", vertexLayout, 1.0f, vulkanDevice, queue);
if (deviceFeatures.textureCompressionBC) {
textures.colorMap.loadFromFile(getAssetPath() + "models/voyager/voyager_bc3_unorm.ktx", VK_FORMAT_BC3_UNORM_BLOCK, vulkanDevice, queue);
}
else if (deviceFeatures.textureCompressionASTC_LDR) {
textures.colorMap.loadFromFile(getAssetPath() + "models/voyager/voyager_astc_8x8_unorm.ktx", VK_FORMAT_ASTC_8x8_UNORM_BLOCK, vulkanDevice, queue);
}
else if (deviceFeatures.textureCompressionETC2) {
textures.colorMap.loadFromFile(getAssetPath() + "models/voyager/voyager_etc2_unorm.ktx", VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, vulkanDevice, queue);
}
else {
vks::tools::exitFatal("Device does not support any compressed texture format!", "Error");
}
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vks::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vertexLayout.stride(),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Texture coordinates
vertices.attributeDescriptions[2] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6);
// Location 3 : Color
vertices.attributeDescriptions[3] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one combined image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader combined sampler
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
VkDescriptorImageInfo texDescriptor =
vks::initializers::descriptorImageInfo(
textures.colorMap.sampler,
textures.colorMap.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffer.descriptor),
// Binding 1 : Color map
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
VkPipelineMultisampleStateCreateInfo multisampleState{};
multisampleState.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
// MSAA rendering pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/mesh/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/mesh/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Setup multi sampling
multisampleState.rasterizationSamples = sampleCount; // Number of samples to use for rasterization
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.MSAA));
// MSAA with sample shading pipeline
// Sample shading enables per-sample shading to avoid shader aliasing and smooth out e.g. high frequency texture maps
// Note: This will trade performance for are more stable image
multisampleState.sampleShadingEnable = VK_TRUE; // Enable per-sample shading (instead of per-fragment)
multisampleState.minSampleShading = 0.25f; // Minimum fraction for sample shading
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.MSAASampleShading));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffer,
sizeof(uboVS)));
// Map persistent
VK_CHECK_RESULT(uniformBuffer.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Vertex shader
glm::mat4 viewMatrix = glm::mat4(1.0f);
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom));
float offset = 0.5f;
int uboIndex = 1;
uboVS.model = glm::mat4(1.0f);
uboVS.model = viewMatrix * glm::translate(uboVS.model, cameraPos);
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
memcpy(uniformBuffer.mapped, &uboVS, sizeof(uboVS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
sampleCount = getMaxUsableSampleCount();
VulkanExampleBase::prepare();
loadAssets();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
// Returns the maximum sample count usable by the platform
VkSampleCountFlagBits getMaxUsableSampleCount()
{
VkSampleCountFlags counts = std::min(deviceProperties.limits.framebufferColorSampleCounts, deviceProperties.limits.framebufferDepthSampleCounts);
if (counts & VK_SAMPLE_COUNT_64_BIT) { return VK_SAMPLE_COUNT_64_BIT; }
if (counts & VK_SAMPLE_COUNT_32_BIT) { return VK_SAMPLE_COUNT_32_BIT; }
if (counts & VK_SAMPLE_COUNT_16_BIT) { return VK_SAMPLE_COUNT_16_BIT; }
if (counts & VK_SAMPLE_COUNT_8_BIT) { return VK_SAMPLE_COUNT_8_BIT; }
if (counts & VK_SAMPLE_COUNT_4_BIT) { return VK_SAMPLE_COUNT_4_BIT; }
if (counts & VK_SAMPLE_COUNT_2_BIT) { return VK_SAMPLE_COUNT_2_BIT; }
return VK_SAMPLE_COUNT_1_BIT;
}
// UI overlay configuration needs to be adjusted for this example (renderpass setup, attachment count, etc.)
virtual void OnSetupUIOverlay(vks::UIOverlayCreateInfo &createInfo)
{
createInfo.renderPass = uiRenderPass;
createInfo.framebuffers = frameBuffers;
createInfo.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
createInfo.attachmentCount = 1;
createInfo.clearValues = {
{ { 1.0f, 1.0f, 1.0f, 1.0f } },
{ { 1.0f, 1.0f, 1.0f, 1.0f } },
{ { 1.0f, 0 } },
};
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (vulkanDevice->features.sampleRateShading) {
if (overlay->header("Settings")) {
if (overlay->checkBox("Sample rate shading", &useSampleShading)) {
buildCommandBuffers();
}
}
}
}
};
VULKAN_EXAMPLE_MAIN()