768 lines
26 KiB
C++
768 lines
26 KiB
C++
/*
|
|
* Vulkan Example - Runtime mip map generation
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
// todo: Fallback for sampler selection on devices that don't support shaderSampledImageArrayDynamicIndexing
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
#include <gli/gli.hpp>
|
|
|
|
#include <vulkan/vulkan.h>
|
|
#include "vulkanexamplebase.h"
|
|
#include "VulkanDevice.hpp"
|
|
#include "VulkanBuffer.hpp"
|
|
#include "VulkanModel.hpp"
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
#define ENABLE_VALIDATION false
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
struct Texture {
|
|
VkImage image;
|
|
VkImageLayout imageLayout;
|
|
VkDeviceMemory deviceMemory;
|
|
VkImageView view;
|
|
uint32_t width, height;
|
|
uint32_t mipLevels;
|
|
} texture;
|
|
|
|
// To demonstrate mip mapping and filtering this example uses separate samplers
|
|
std::vector<std::string> samplerNames{ "No mip maps" , "With mip maps (bilinear)" , "With mip maps (anisotropic)" };
|
|
std::vector<VkSampler> samplers;
|
|
|
|
// Vertex layout for the models
|
|
vks::VertexLayout vertexLayout = vks::VertexLayout({
|
|
vks::VERTEX_COMPONENT_POSITION,
|
|
vks::VERTEX_COMPONENT_UV,
|
|
vks::VERTEX_COMPONENT_NORMAL,
|
|
});
|
|
|
|
struct {
|
|
vks::Model tunnel;
|
|
} models;
|
|
|
|
struct {
|
|
VkPipelineVertexInputStateCreateInfo inputState;
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
} vertices;
|
|
|
|
vks::Buffer uniformBufferVS;
|
|
|
|
struct uboVS {
|
|
glm::mat4 projection;
|
|
glm::mat4 view;
|
|
glm::mat4 model;
|
|
glm::vec4 viewPos;
|
|
float lodBias = 0.0f;
|
|
uint32_t samplerIndex = 2;
|
|
} uboVS;
|
|
|
|
struct {
|
|
VkPipeline solid;
|
|
} pipelines;
|
|
|
|
VkPipelineLayout pipelineLayout;
|
|
VkDescriptorSet descriptorSet;
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
title = "Vulkan Example - Runtime mip map generation";
|
|
enableTextOverlay = true;
|
|
camera.type = Camera::CameraType::firstperson;
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 1024.0f);
|
|
camera.setRotation(glm::vec3(0.0f, 90.0f, 0.0f));
|
|
camera.setTranslation(glm::vec3(40.75f, 0.0f, 0.0f));
|
|
camera.movementSpeed = 2.5f;
|
|
camera.rotationSpeed = 0.5f;
|
|
timerSpeed *= 0.05f;
|
|
paused = true;
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
destroyTextureImage(texture);
|
|
vkDestroyPipeline(device, pipelines.solid, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
uniformBufferVS.destroy();
|
|
for (auto sampler : samplers)
|
|
{
|
|
vkDestroySampler(device, sampler, nullptr);
|
|
}
|
|
models.tunnel.destroy();
|
|
}
|
|
|
|
void loadTexture(std::string fileName, VkFormat format, bool forceLinearTiling)
|
|
{
|
|
#if defined(__ANDROID__)
|
|
// Textures are stored inside the apk on Android (compressed)
|
|
// So they need to be loaded via the asset manager
|
|
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, fileName.c_str(), AASSET_MODE_STREAMING);
|
|
assert(asset);
|
|
size_t size = AAsset_getLength(asset);
|
|
assert(size > 0);
|
|
|
|
void *textureData = malloc(size);
|
|
AAsset_read(asset, textureData, size);
|
|
AAsset_close(asset);
|
|
|
|
gli::texture2d tex2D(gli::load((const char*)textureData, size));
|
|
#else
|
|
gli::texture2d tex2D(gli::load(fileName));
|
|
#endif
|
|
|
|
assert(!tex2D.empty());
|
|
|
|
VkFormatProperties formatProperties;
|
|
|
|
texture.width = static_cast<uint32_t>(tex2D[0].extent().x);
|
|
texture.height = static_cast<uint32_t>(tex2D[0].extent().y);
|
|
|
|
// calculate num of mip maps
|
|
// numLevels = 1 + floor(log2(max(w, h, d)))
|
|
// Calculated as log2(max(width, height, depth))c + 1 (see specs)
|
|
texture.mipLevels = floor(log2(std::max(texture.width, texture.height))) + 1;
|
|
|
|
// Get device properites for the requested texture format
|
|
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
|
|
|
|
// Mip-chain generation requires support for blit source and destination
|
|
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT);
|
|
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT);
|
|
|
|
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs = {};
|
|
|
|
// Create a host-visible staging buffer that contains the raw image data
|
|
VkBuffer stagingBuffer;
|
|
VkDeviceMemory stagingMemory;
|
|
|
|
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
|
|
bufferCreateInfo.size = tex2D.size();
|
|
// This buffer is used as a transfer source for the buffer copy
|
|
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
|
|
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
|
|
|
|
// Copy texture data into staging buffer
|
|
uint8_t *data;
|
|
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
|
|
memcpy(data, tex2D.data(), tex2D.size());
|
|
vkUnmapMemory(device, stagingMemory);
|
|
|
|
// Create optimal tiled target image
|
|
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCreateInfo.format = format;
|
|
imageCreateInfo.mipLevels = texture.mipLevels;
|
|
imageCreateInfo.arrayLayers = 1;
|
|
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
|
|
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
|
|
|
|
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
|
|
VkImageSubresourceRange subresourceRange = {};
|
|
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
subresourceRange.levelCount = 1;
|
|
subresourceRange.layerCount = 1;
|
|
|
|
// Optimal image will be used as destination for the copy, so we must transfer from our initial undefined image layout to the transfer destination layout
|
|
vks::tools::setImageLayout(copyCmd, texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange);
|
|
|
|
// Copy the first mip of the chain, remaining mips will be generated
|
|
VkBufferImageCopy bufferCopyRegion = {};
|
|
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
bufferCopyRegion.imageSubresource.mipLevel = 0;
|
|
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
|
|
bufferCopyRegion.imageSubresource.layerCount = 1;
|
|
bufferCopyRegion.imageExtent.width = texture.width;
|
|
bufferCopyRegion.imageExtent.height = texture.height;
|
|
bufferCopyRegion.imageExtent.depth = 1;
|
|
|
|
vkCmdCopyBufferToImage(copyCmd, stagingBuffer, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &bufferCopyRegion);
|
|
|
|
// Transition first mip level to transfer source for read during blit
|
|
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
vks::tools::setImageLayout(
|
|
copyCmd,
|
|
texture.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
subresourceRange);
|
|
|
|
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
|
|
|
|
// Clean up staging resources
|
|
vkFreeMemory(device, stagingMemory, nullptr);
|
|
vkDestroyBuffer(device, stagingBuffer, nullptr);
|
|
|
|
// Generate the mip chain
|
|
// ---------------------------------------------------------------
|
|
// We copy down the whole mip chain doing a blit from mip-1 to mip
|
|
// An alternative way would be to always blit from the first mip level and sample that one down
|
|
VkCommandBuffer blitCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
|
|
// Copy down mips from n-1 to n
|
|
for (int32_t i = 1; i < texture.mipLevels; i++)
|
|
{
|
|
VkImageBlit imageBlit{};
|
|
|
|
// Source
|
|
imageBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
imageBlit.srcSubresource.layerCount = 1;
|
|
imageBlit.srcSubresource.mipLevel = i-1;
|
|
imageBlit.srcOffsets[1].x = int32_t(texture.width >> (i - 1));
|
|
imageBlit.srcOffsets[1].y = int32_t(texture.height >> (i - 1));
|
|
imageBlit.srcOffsets[1].z = 1;
|
|
|
|
// Destination
|
|
imageBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
imageBlit.dstSubresource.layerCount = 1;
|
|
imageBlit.dstSubresource.mipLevel = i;
|
|
imageBlit.dstOffsets[1].x = int32_t(texture.width >> i);
|
|
imageBlit.dstOffsets[1].y = int32_t(texture.height >> i);
|
|
imageBlit.dstOffsets[1].z = 1;
|
|
|
|
VkImageSubresourceRange mipSubRange = {};
|
|
mipSubRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
mipSubRange.baseMipLevel = i;
|
|
mipSubRange.levelCount = 1;
|
|
mipSubRange.layerCount = 1;
|
|
|
|
// Transiton current mip level to transfer dest
|
|
vks::tools::setImageLayout(
|
|
blitCmd,
|
|
texture.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
mipSubRange,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
VK_PIPELINE_STAGE_HOST_BIT);
|
|
|
|
// Blit from previous level
|
|
vkCmdBlitImage(
|
|
blitCmd,
|
|
texture.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
texture.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
1,
|
|
&imageBlit,
|
|
VK_FILTER_LINEAR);
|
|
|
|
// Transiton current mip level to transfer source for read in next iteration
|
|
vks::tools::setImageLayout(
|
|
blitCmd,
|
|
texture.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
mipSubRange,
|
|
VK_PIPELINE_STAGE_HOST_BIT,
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT);
|
|
}
|
|
|
|
// After the loop, all mip layers are in TRANSFER_SRC layout, so transition all to SHADER_READ
|
|
subresourceRange.levelCount = texture.mipLevels;
|
|
vks::tools::setImageLayout(
|
|
blitCmd,
|
|
texture.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
texture.imageLayout,
|
|
subresourceRange);
|
|
|
|
VulkanExampleBase::flushCommandBuffer(blitCmd, queue, true);
|
|
// ---------------------------------------------------------------
|
|
|
|
// Create samplers
|
|
samplers.resize(3);
|
|
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
|
|
sampler.magFilter = VK_FILTER_LINEAR;
|
|
sampler.minFilter = VK_FILTER_LINEAR;
|
|
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
|
|
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
|
|
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
|
|
sampler.mipLodBias = 0.0f;
|
|
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
|
sampler.minLod = 0.0f;
|
|
sampler.maxLod = 0.0f;
|
|
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
sampler.maxAnisotropy = 1.0;
|
|
sampler.anisotropyEnable = VK_FALSE;
|
|
|
|
// Without mip mapping
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &samplers[0]));
|
|
|
|
// With mip mapping
|
|
sampler.maxLod = (float)texture.mipLevels;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &samplers[1]));
|
|
|
|
// With mip mapping and anisotropic filtering
|
|
if (vulkanDevice->features.samplerAnisotropy)
|
|
{
|
|
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
|
|
sampler.anisotropyEnable = VK_TRUE;
|
|
}
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &samplers[2]));
|
|
|
|
// Create image view
|
|
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
|
|
view.image = texture.image;
|
|
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
view.format = format;
|
|
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
|
|
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
view.subresourceRange.baseMipLevel = 0;
|
|
view.subresourceRange.baseArrayLayer = 0;
|
|
view.subresourceRange.layerCount = 1;
|
|
view.subresourceRange.levelCount = texture.mipLevels;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
|
|
}
|
|
|
|
// Free all Vulkan resources used a texture object
|
|
void destroyTextureImage(Texture texture)
|
|
{
|
|
vkDestroyImageView(device, texture.view, nullptr);
|
|
vkDestroyImage(device, texture.image, nullptr);
|
|
vkFreeMemory(device, texture.deviceMemory, nullptr);
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
|
|
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.tunnel.vertices.buffer, offsets);
|
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.tunnel.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
|
|
|
vkCmdDrawIndexed(drawCmdBuffers[i], models.tunnel.indexCount, 1, 0, 0, 0);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
// Command buffer to be sumitted to the queue
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
|
|
// Submit to queue
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void loadAssets()
|
|
{
|
|
models.tunnel.loadFromFile(getAssetPath() + "models/tunnel_cylinder.dae", vertexLayout, 1.0f, vulkanDevice, queue);
|
|
loadTexture(getAssetPath() + "textures/metalplate_nomips_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, false);
|
|
}
|
|
|
|
void setupVertexDescriptions()
|
|
{
|
|
// Binding description
|
|
vertices.bindingDescriptions.resize(1);
|
|
vertices.bindingDescriptions[0] =
|
|
vks::initializers::vertexInputBindingDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
vertexLayout.stride(),
|
|
VK_VERTEX_INPUT_RATE_VERTEX);
|
|
|
|
// Attribute descriptions
|
|
// Describes memory layout and shader positions
|
|
vertices.attributeDescriptions.resize(3);
|
|
// Location 0 : Position
|
|
vertices.attributeDescriptions[0] =
|
|
vks::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
0,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
0);
|
|
// Location 1 : Texture coordinates
|
|
vertices.attributeDescriptions[1] =
|
|
vks::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
1,
|
|
VK_FORMAT_R32G32_SFLOAT,
|
|
3 * sizeof(float));
|
|
// Location 1 : Vertex normal
|
|
vertices.attributeDescriptions[2] =
|
|
vks::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
2,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
5 * sizeof(float));
|
|
|
|
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
|
|
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
|
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
|
|
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
std::vector<VkDescriptorPoolSize> poolSizes =
|
|
{
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), // Vertex shader UBO
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1), // Sampled image
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_SAMPLER, 3), // 3 samplers (array)
|
|
};
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
|
vks::initializers::descriptorPoolCreateInfo(
|
|
static_cast<uint32_t>(poolSizes.size()),
|
|
poolSizes.data(),
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
|
|
|
|
// Binding 0: Vertex shader uniform buffer
|
|
setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
0));
|
|
|
|
// Binding 1: Sampled image
|
|
setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
1));
|
|
|
|
// Binding 2: Sampler array (3 descriptors)
|
|
setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_SAMPLER,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
2,
|
|
3));
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vks::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
static_cast<uint32_t>(setLayoutBindings.size()));
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
|
vks::initializers::pipelineLayoutCreateInfo(
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
}
|
|
|
|
void setupDescriptorSet()
|
|
{
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vks::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
|
|
|
|
// Binding 0: Vertex shader uniform buffer
|
|
writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet(
|
|
descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
0,
|
|
&uniformBufferVS.descriptor));
|
|
|
|
// Binding 1: Sampled image
|
|
VkDescriptorImageInfo textureDescriptor =
|
|
vks::initializers::descriptorImageInfo(
|
|
VK_NULL_HANDLE,
|
|
texture.view,
|
|
texture.imageLayout);
|
|
writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet(
|
|
descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
|
|
1,
|
|
&textureDescriptor));
|
|
|
|
// Binding 2: Sampler array
|
|
std::vector<VkDescriptorImageInfo> samplerDescriptors;
|
|
for (auto i = 0; i < samplers.size(); i++)
|
|
{
|
|
samplerDescriptors.push_back(vks::initializers::descriptorImageInfo(samplers[i], VK_NULL_HANDLE, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL));
|
|
}
|
|
VkWriteDescriptorSet samplerDescriptorWrite{};
|
|
samplerDescriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
samplerDescriptorWrite.dstSet = descriptorSet;
|
|
samplerDescriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
|
|
samplerDescriptorWrite.descriptorCount = static_cast<uint32_t>(samplerDescriptors.size());
|
|
samplerDescriptorWrite.pImageInfo = samplerDescriptors.data();
|
|
samplerDescriptorWrite.dstBinding = 2;
|
|
samplerDescriptorWrite.dstArrayElement = 0;
|
|
writeDescriptorSets.push_back(samplerDescriptorWrite);
|
|
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
|
vks::initializers::pipelineInputAssemblyStateCreateInfo(
|
|
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
|
0,
|
|
VK_FALSE);
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
|
vks::initializers::pipelineRasterizationStateCreateInfo(
|
|
VK_POLYGON_MODE_FILL,
|
|
VK_CULL_MODE_BACK_BIT,
|
|
VK_FRONT_FACE_COUNTER_CLOCKWISE,
|
|
0);
|
|
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
|
vks::initializers::pipelineColorBlendAttachmentState(
|
|
0xf,
|
|
VK_FALSE);
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
|
vks::initializers::pipelineColorBlendStateCreateInfo(
|
|
1,
|
|
&blendAttachmentState);
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
|
vks::initializers::pipelineDepthStencilStateCreateInfo(
|
|
VK_TRUE,
|
|
VK_TRUE,
|
|
VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState =
|
|
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampleState =
|
|
vks::initializers::pipelineMultisampleStateCreateInfo(
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
0);
|
|
|
|
std::vector<VkDynamicState> dynamicStateEnables = {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR
|
|
};
|
|
VkPipelineDynamicStateCreateInfo dynamicState =
|
|
vks::initializers::pipelineDynamicStateCreateInfo(
|
|
dynamicStateEnables.data(),
|
|
static_cast<uint32_t>(dynamicStateEnables.size()),
|
|
0);
|
|
|
|
// Load shaders
|
|
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
|
|
|
|
shaderStages[0] = loadShader(getAssetPath() + "shaders/texturemipmapgen/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getAssetPath() + "shaders/texturemipmapgen/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
|
vks::initializers::pipelineCreateInfo(
|
|
pipelineLayout,
|
|
renderPass,
|
|
0);
|
|
|
|
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
|
|
}
|
|
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
void prepareUniformBuffers()
|
|
{
|
|
// Vertex shader uniform buffer block
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&uniformBufferVS,
|
|
sizeof(uboVS),
|
|
&uboVS));
|
|
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void updateUniformBuffers()
|
|
{
|
|
uboVS.projection = camera.matrices.perspective;
|
|
uboVS.view = camera.matrices.view;
|
|
uboVS.model = glm::rotate(glm::mat4(), glm::radians(timer * 360.0f), glm::vec3(1.0f, 0.0f, 0.0f));
|
|
uboVS.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f);
|
|
VK_CHECK_RESULT(uniformBufferVS.map());
|
|
memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS));
|
|
uniformBufferVS.unmap();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
loadAssets();
|
|
setupVertexDescriptions();
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSet();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
if (!paused)
|
|
{
|
|
updateUniformBuffers();
|
|
}
|
|
}
|
|
|
|
virtual void viewChanged()
|
|
{
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void changeLodBias(float delta)
|
|
{
|
|
uboVS.lodBias += delta;
|
|
if (uboVS.lodBias < 0.0f)
|
|
{
|
|
uboVS.lodBias = 0.0f;
|
|
}
|
|
if (uboVS.lodBias > texture.mipLevels)
|
|
{
|
|
uboVS.lodBias = (float)texture.mipLevels;
|
|
}
|
|
updateUniformBuffers();
|
|
updateTextOverlay();
|
|
}
|
|
|
|
void toggleSampler()
|
|
{
|
|
uboVS.samplerIndex = (uboVS.samplerIndex < static_cast<uint32_t>(samplers.size()) - 1) ? uboVS.samplerIndex + 1 : 0;
|
|
updateUniformBuffers();
|
|
updateTextOverlay();
|
|
}
|
|
|
|
virtual void keyPressed(uint32_t keyCode)
|
|
{
|
|
switch (keyCode)
|
|
{
|
|
case KEY_KPADD:
|
|
case GAMEPAD_BUTTON_R1:
|
|
changeLodBias(0.1f);
|
|
break;
|
|
case KEY_KPSUB:
|
|
case GAMEPAD_BUTTON_L1:
|
|
changeLodBias(-0.1f);
|
|
break;
|
|
case KEY_F:
|
|
case GAMEPAD_BUTTON_A:
|
|
toggleSampler();
|
|
break;
|
|
}
|
|
}
|
|
|
|
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
|
|
{
|
|
std::stringstream ss;
|
|
ss << std::setprecision(2) << std::fixed << uboVS.lodBias;
|
|
#if defined(__ANDROID__)
|
|
textOverlay->addText("LOD bias: " + ss.str() + " (Buttons L1/R1 to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
|
|
textOverlay->addText("Sampler: " + samplerNames[uboVS.samplerIndex] + " (\"Button A\" to toggle)", 5.0f, 105.0f, VulkanTextOverlay::alignLeft);
|
|
#else
|
|
textOverlay->addText("LOD bias: " + ss.str() + " (numpad +/- to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
|
|
textOverlay->addText("Sampler: " + samplerNames[uboVS.samplerIndex] + " (\"f\" to toggle)", 5.0f, 105.0f, VulkanTextOverlay::alignLeft);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|