procedural-3d-engine/tessellation/tessellation.cpp
Spencer f7ab861ef5 Updated tessellation text interface
Examining the tessellation code I realized there was a built-in toggle for the wireframe which is hidden due to lack of text overlayed so quickly added it.
2017-04-16 23:15:21 -05:00

628 lines
20 KiB
C++

/*
* Vulkan Example - Tessellation shader PN triangles
*
* Based on http://alex.vlachos.com/graphics/CurvedPNTriangles.pdf
* Shaders based on http://onrendering.blogspot.de/2011/12/tessellation-on-gpu-curved-pn-triangles.html
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#include "VulkanBuffer.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
bool splitScreen = true;
struct {
vks::Texture2D colorMap;
} textures;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
});
struct {
vks::Model object;
} models;
struct {
vks::Buffer tessControl, tessEval;
} uniformBuffers;
struct UBOTessControl {
float tessLevel = 3.0f;
} uboTessControl;
struct UBOTessEval {
glm::mat4 projection;
glm::mat4 model;
float tessAlpha = 1.0f;
} uboTessEval;
struct Pipelines {
VkPipeline solid;
VkPipeline wire = VK_NULL_HANDLE;
VkPipeline solidPassThrough;
VkPipeline wirePassThrough = VK_NULL_HANDLE;
} pipelines;
VkPipeline *pipelineLeft = &pipelines.wirePassThrough;
VkPipeline *pipelineRight = &pipelines.wire;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -6.5f;
rotation = glm::vec3(-350.0f, 60.0f, 0.0f);
cameraPos = glm::vec3(-3.0f, 2.3f, 0.0f);
title = "Vulkan Example - Tessellation shader (PN Triangles)";
enableTextOverlay = true;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.solid, nullptr);
if (pipelines.wire != VK_NULL_HANDLE) {
vkDestroyPipeline(device, pipelines.wire, nullptr);
};
vkDestroyPipeline(device, pipelines.solidPassThrough, nullptr);
if (pipelines.wirePassThrough != VK_NULL_HANDLE) {
vkDestroyPipeline(device, pipelines.wirePassThrough, nullptr);
};
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
models.object.destroy();
uniformBuffers.tessControl.destroy();
uniformBuffers.tessEval.destroy();
textures.colorMap.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Example uses tessellation shaders
if (deviceFeatures.tessellationShader) {
enabledFeatures.tessellationShader = VK_TRUE;
}
else {
vks::tools::exitFatal("Selected GPU does not support tessellation shaders!", "Feature not supported");
}
// Fill mode non solid is required for wireframe display
if (deviceFeatures.fillModeNonSolid) {
enabledFeatures.fillModeNonSolid = VK_TRUE;
}
else {
// Wireframe not supported, switch to solid pipelines
pipelineLeft = &pipelines.solidPassThrough;
pipelineRight = &pipelines.solid;
}
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { {0.5f, 0.5f, 0.5f, 0.0f} };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport(splitScreen ? (float)width / 2.0f : (float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdSetLineWidth(drawCmdBuffers[i], 1.0f);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.object.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.object.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
if (splitScreen)
{
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineLeft);
vkCmdDrawIndexed(drawCmdBuffers[i], models.object.indexCount, 1, 0, 0, 0);
viewport.x = float(width) / 2;
}
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineRight);
vkCmdDrawIndexed(drawCmdBuffers[i], models.object.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
models.object.loadFromFile(getAssetPath() + "models/lowpoly/deer.dae", vertexLayout, 1.0f, vulkanDevice, queue);
if (deviceFeatures.textureCompressionBC) {
textures.colorMap.loadFromFile(getAssetPath() + "textures/deer_bc3_unorm.ktx", VK_FORMAT_BC3_UNORM_BLOCK, vulkanDevice, queue);
}
else if (deviceFeatures.textureCompressionASTC_LDR) {
textures.colorMap.loadFromFile(getAssetPath() + "textures/deer_astc_8x8_unorm.ktx", VK_FORMAT_ASTC_8x8_UNORM_BLOCK, vulkanDevice, queue);
}
else if (deviceFeatures.textureCompressionETC2) {
textures.colorMap.loadFromFile(getAssetPath() + "textures/deer_etc2_unorm.ktx", VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, vulkanDevice, queue);
}
else {
vks::tools::exitFatal("Device does not support any compressed texture format!", "Error");
}
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vks::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vertexLayout.stride(),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(3);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normals
vertices.attributeDescriptions[1] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Texture coordinates
vertices.attributeDescriptions[2] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6);
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses two ubos and one combined image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Tessellation control shader ubo
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
0),
// Binding 1 : Tessellation evaluation shader ubo
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
1),
// Binding 2 : Fragment shader combined sampler
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
VkDescriptorImageInfo texDescriptor =
vks::initializers::descriptorImageInfo(
textures.colorMap.sampler,
textures.colorMap.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Tessellation control shader ubo
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.tessControl.descriptor),
// Binding 1 : Tessellation evaluation shader ubo
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
1,
&uniformBuffers.tessEval.descriptor),
// Binding 2 : Color map
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&texDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
VkPipelineTessellationStateCreateInfo tessellationState =
vks::initializers::pipelineTessellationStateCreateInfo(3);
// Tessellation pipelines
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 4> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/tessellation/base.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/tessellation/base.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
shaderStages[2] = loadShader(getAssetPath() + "shaders/tessellation/pntriangles.tesc.spv", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
shaderStages[3] = loadShader(getAssetPath() + "shaders/tessellation/pntriangles.tese.spv", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.pTessellationState = &tessellationState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
// Tessellation pipelines
// Solid
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
// Wireframe
if (deviceFeatures.fillModeNonSolid) {
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wire));
}
// Pass through pipelines
// Load pass through tessellation shaders (Vert and frag are reused)
shaderStages[2] = loadShader(getAssetPath() + "shaders/tessellation/passthrough.tesc.spv", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
shaderStages[3] = loadShader(getAssetPath() + "shaders/tessellation/passthrough.tese.spv", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT);
// Solid
rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solidPassThrough));
// Wireframe
if (deviceFeatures.fillModeNonSolid) {
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wirePassThrough));
}
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Tessellation evaluation shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.tessEval,
sizeof(uboTessEval)));
// Tessellation control shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.tessControl,
sizeof(uboTessControl)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.tessControl.map());
VK_CHECK_RESULT(uniformBuffers.tessEval.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Tessellation eval
glm::mat4 viewMatrix = glm::mat4();
uboTessEval.projection = glm::perspective(glm::radians(45.0f), (float)(width* ((splitScreen) ? 0.5f : 1.0f)) / (float)height, 0.1f, 256.0f);
viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom));
uboTessEval.model = glm::mat4();
uboTessEval.model = viewMatrix * glm::translate(uboTessEval.model, cameraPos);
uboTessEval.model = glm::rotate(uboTessEval.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboTessEval.model = glm::rotate(uboTessEval.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboTessEval.model = glm::rotate(uboTessEval.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
// Tessellation evaulation uniform block
memcpy(uniformBuffers.tessEval.mapped, &uboTessEval, sizeof(uboTessEval));
// Tessellation control uniform block
memcpy(uniformBuffers.tessControl.mapped, &uboTessControl, sizeof(uboTessControl));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case KEY_KPADD:
case GAMEPAD_BUTTON_R1:
changeTessellationLevel(0.25);
break;
case KEY_KPSUB:
case GAMEPAD_BUTTON_L1:
changeTessellationLevel(-0.25);
break;
case KEY_W:
case GAMEPAD_BUTTON_A:
if (deviceFeatures.fillModeNonSolid) {
togglePipelines();
}
break;
case KEY_S:
case GAMEPAD_BUTTON_X:
toggleSplitScreen();
break;
}
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
std::stringstream ss;
ss << std::setprecision(2) << std::fixed << uboTessControl.tessLevel;
#if defined(__ANDROID__)
textOverlay->addText("Tessellation level: " + ss.str() + " (Buttons L1/R1 to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
if (deviceFeatures.fillModeNonSolid) {
textOverlay->addText("Press \"Button X\" to toggle splitscreen", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Press \"Button A\" to toggle wireframe", 5.0f, 115.0f, VulkanTextOverlay::alignLeft);
}
#else
textOverlay->addText("Tessellation level: " + ss.str() + " (NUMPAD +/- to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
if (deviceFeatures.fillModeNonSolid) {
textOverlay->addText("Press \"s\" to toggle splitscreen", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Press \"w\" to toggle wireframe", 5.0f, 115.0f, VulkanTextOverlay::alignLeft);
}
#endif
}
void changeTessellationLevel(float delta)
{
uboTessControl.tessLevel += delta;
// Clamp
uboTessControl.tessLevel = fmax(1.0f, fmin(uboTessControl.tessLevel, 32.0f));
updateUniformBuffers();
updateTextOverlay();
}
void togglePipelines()
{
if (pipelineRight == &pipelines.solid)
{
pipelineRight = &pipelines.wire;
pipelineLeft = &pipelines.wirePassThrough;
}
else
{
pipelineRight = &pipelines.solid;
pipelineLeft = &pipelines.solidPassThrough;
}
reBuildCommandBuffers();
}
void toggleSplitScreen()
{
splitScreen = !splitScreen;
updateUniformBuffers();
reBuildCommandBuffers();
}
};
VULKAN_EXAMPLE_MAIN()