procedural-3d-engine/shadowmapping/shadowmapping.cpp

1196 lines
No EOL
39 KiB
C++

/*
* Vulkan Example - Offscreen rendering using a separate framebuffer
*
* p - Toggle light source animation
* l - Toggle between scene and light's POV
* s - Toggle shadowmap display
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "vulkanMeshLoader.hpp"
#define VERTEX_BUFFER_BIND_ID 0
//#define USE_GLSL
#define ENABLE_VALIDATION false
// 16 bits of depth is enough for such a small scene
#define DEPTH_FORMAT VK_FORMAT_D16_UNORM
// Texture properties
#define TEX_DIM 2048
#define TEX_FILTER VK_FILTER_LINEAR
// Offscreen frame buffer properties
#define FB_DIM TEX_DIM
#define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_UV,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
vkMeshLoader::VERTEX_LAYOUT_NORMAL
};
class VulkanExample : public VulkanExampleBase
{
public:
bool displayShadowMap = true;
bool lightPOV = false;
// Keep depth range as small as possible
// for better shadow map precision
float zNear = 1.0f;
float zFar = 96.0f;
// Constant depth bias factor (always applied)
float depthBiasConstant = 1.25f;
// Slope depth bias factor, applied depending on polygon's slope
float depthBiasSlope = 1.75f;
glm::vec3 lightPos = glm::vec3();
float lightFOV = 45.0f;
struct {
vkMeshLoader::MeshBuffer scene;
vkMeshLoader::MeshBuffer quad;
} meshes;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
vkTools::UniformData uniformDataVS, uniformDataOffscreenVS;
struct {
vkTools::UniformData scene;
} uniformData;
struct {
glm::mat4 projection;
glm::mat4 model;
} uboVSquad;
struct {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::mat4 depthBiasMVP;
glm::vec3 lightPos;
} uboVSscene;
struct {
glm::mat4 depthMVP;
} uboOffscreenVS;
struct {
VkPipeline quad;
VkPipeline offscreen;
VkPipeline scene;
} pipelines;
struct {
VkPipelineLayout quad;
VkPipelineLayout offscreen;
} pipelineLayouts;
struct {
VkDescriptorSet offscreen;
VkDescriptorSet scene;
} descriptorSets;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct FrameBuffer {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color, depth;
vkTools::VulkanTexture textureTarget;
} offScreenFrameBuf;
VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -20.0f;
rotation = { -15.0f, -390.0f, 0.0f };
title = "Vulkan Example - Projected shadow mapping";
timerSpeed *= 0.5f;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
// Texture target
textureLoader->destroyTexture(offScreenFrameBuf.textureTarget);
// Frame buffer
// Color attachment
vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr);
// Depth attachment
vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr);
vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr);
vkDestroyPipeline(device, pipelines.quad, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.quad, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Meshes
vkMeshLoader::freeMeshBufferResources(device, &meshes.scene);
vkMeshLoader::freeMeshBufferResources(device, &meshes.quad);
// Uniform buffers
vkTools::destroyUniformData(device, &uniformDataVS);
vkTools::destroyUniformData(device, &uniformDataOffscreenVS);
vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer);
}
// Preapre an empty texture as the blit target from
// the offscreen framebuffer
void prepareTextureTarget(uint32_t width, uint32_t height, VkFormat format)
{
createSetupCommandBuffer();
VkResult err;
// Get device properites for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Check if format is supported for optimal tiling
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT);
// Prepare blit target texture
offScreenFrameBuf.textureTarget.width = width;
offScreenFrameBuf.textureTarget.height = height;
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageCreateInfo.flags = 0;
imageCreateInfo.pQueueFamilyIndices = 0;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &offScreenFrameBuf.textureTarget.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenFrameBuf.textureTarget.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &offScreenFrameBuf.textureTarget.deviceMemory);
assert(!err);
err = vkBindImageMemory(device, offScreenFrameBuf.textureTarget.image, offScreenFrameBuf.textureTarget.deviceMemory, 0);
assert(!err);
offScreenFrameBuf.textureTarget.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(
setupCmdBuffer,
offScreenFrameBuf.textureTarget.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
offScreenFrameBuf.textureTarget.imageLayout);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = TEX_FILTER;
sampler.minFilter = TEX_FILTER;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &offScreenFrameBuf.textureTarget.sampler);
assert(!err);
// Create image view
VkImageViewCreateInfo view = {};
view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, 0, 1 };
view.image = offScreenFrameBuf.textureTarget.image;
err = vkCreateImageView(device, &view, nullptr, &offScreenFrameBuf.textureTarget.view);
assert(!err);
flushSetupCommandBuffer();
}
void prepareOffscreenFramebuffer()
{
createSetupCommandBuffer();
offScreenFrameBuf.width = FB_DIM;
offScreenFrameBuf.height = FB_DIM;
VkFormat fbColorFormat = FB_COLOR_FORMAT;
VkResult err;
// Color attachment
VkImageCreateInfo image = vkTools::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = fbColorFormat;
image.extent.width = offScreenFrameBuf.width;
image.extent.height = offScreenFrameBuf.height;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
// Image of the framebuffer is blit source
image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image.flags = 0;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = fbColorFormat;
colorImageView.flags = 0;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
VkMemoryRequirements memReqs;
err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.color.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem);
assert(!err);
err = vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0);
assert(!err);
vkTools::setImageLayout(
setupCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
colorImageView.image = offScreenFrameBuf.color.image;
err = vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view);
assert(!err);
// Depth stencil attachment
image.format = DEPTH_FORMAT;
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = DEPTH_FORMAT;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.depth.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem);
assert(!err);
err = vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0);
assert(!err);
vkTools::setImageLayout(
setupCmdBuffer,
offScreenFrameBuf.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
depthStencilView.image = offScreenFrameBuf.depth.image;
err = vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view);
assert(!err);
VkImageView attachments[2];
attachments[0] = offScreenFrameBuf.color.view;
attachments[1] = offScreenFrameBuf.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = {};
fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbufCreateInfo.pNext = NULL;
fbufCreateInfo.renderPass = renderPass;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.width = offScreenFrameBuf.width;
fbufCreateInfo.height = offScreenFrameBuf.height;
fbufCreateInfo.layers = 1;
err = vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer);
assert(!err);
flushSetupCommandBuffer();
}
void buildOffscreenCommandBuffer()
{
VkResult err;
// Create separate command buffer for offscreen
// rendering
if (offScreenCmdBuffer == VK_NULL_HANDLE)
{
VkCommandBufferAllocateInfo cmd = vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult vkRes = vkAllocateCommandBuffers(device, &cmd, &offScreenCmdBuffer);
assert(!vkRes);
}
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = {};
renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassBeginInfo.pNext = NULL;
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width;
renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
err = vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo);
assert(!err);
VkViewport viewport = vkTools::initializers::viewport(
(float)offScreenFrameBuf.width,
(float)offScreenFrameBuf.height,
0.0f,
1.0f);
vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
offScreenFrameBuf.width,
offScreenFrameBuf.height,
0,
0);
vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor);
// Set depth bias (aka "Polygon offset")
vkCmdSetDepthBias(
offScreenCmdBuffer,
depthBiasConstant,
0.0f,
depthBiasSlope);
vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.scene.vertices.buf, offsets);
vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.scene.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(offScreenCmdBuffer, meshes.scene.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(offScreenCmdBuffer);
updateTexture();
err = vkEndCommandBuffer(offScreenCmdBuffer);
assert(!err);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.quad);
// Visualize shadow map
if (displayShadowMap)
{
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0);
}
// 3D scene
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSets.scene, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.scene);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.scene.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.scene.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.scene.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
VkSemaphore presentCompleteSemaphore;
VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo =
vkTools::initializers::semaphoreCreateInfo(VK_FLAGS_NONE);
err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, nullptr, &presentCompleteSemaphore);
assert(!err);
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(presentCompleteSemaphore, &currentBuffer);
assert(!err);
// Gather command buffers to be sumitted to the queue
std::vector<VkCommandBuffer> submitCmdBuffers = {
offScreenCmdBuffer,
drawCmdBuffers[currentBuffer],
};
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &presentCompleteSemaphore;
submitInfo.commandBufferCount = submitCmdBuffers.size();
submitInfo.pCommandBuffers = submitCmdBuffers.data();
// Submit draw command buffer
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
err = swapChain.queuePresent(queue, currentBuffer);
assert(!err);
vkDestroySemaphore(device, presentCompleteSemaphore, nullptr);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
err = vkQueueWaitIdle(queue);
assert(!err);
}
void loadMeshes()
{
loadMesh("./../data/models/vulkanscene_shadow.dae", &meshes.scene, vertexLayout, 4.0f);
}
void generateQuad()
{
// Setup vertices for a single uv-mapped quad
struct Vertex {
float pos[3];
float uv[2];
float col[3];
float normal[3];
};
#define QUAD_COLOR_NORMAL { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, 1.0f }
std::vector<Vertex> vertexBuffer =
{
{ { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f }, QUAD_COLOR_NORMAL },
{ { 0.0f, 1.0f, 0.0f },{ 0.0f, 1.0f }, QUAD_COLOR_NORMAL },
{ { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f }, QUAD_COLOR_NORMAL },
{ { 1.0f, 0.0f, 0.0f },{ 1.0f, 0.0f }, QUAD_COLOR_NORMAL }
};
#undef QUAD_COLOR_NORMAL
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
vertexBuffer.size() * sizeof(Vertex),
vertexBuffer.data(),
&meshes.quad.vertices.buf,
&meshes.quad.vertices.mem);
// Setup indices
std::vector<uint32_t> indexBuffer = { 0,1,2, 2,3,0 };
meshes.quad.indexCount = indexBuffer.size();
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
indexBuffer.size() * sizeof(uint32_t),
indexBuffer.data(),
&meshes.quad.indices.buf,
&meshes.quad.indices.mem);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Color
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 5);
// Location 3 : Normal
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses three ubos and two image samplers
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 6),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
3);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
// Textured quad pipeline layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.quad);
assert(!err);
// Offscreen pipeline layout
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen);
assert(!err);
}
void setupDescriptorSets()
{
// Textured quad descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
// Image descriptor for the shadow map texture
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
offScreenFrameBuf.textureTarget.sampler,
offScreenFrameBuf.textureTarget.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformDataVS.descriptor),
// Binding 1 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Offscreen
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen);
assert(!vkRes);
std::vector<VkWriteDescriptorSet> offScreenWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.offscreen,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformDataOffscreenVS.descriptor),
};
vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL);
// 3D scene
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene);
assert(!vkRes);
// Image descriptor for the shadow map texture
texDescriptor.sampler = offScreenFrameBuf.textureTarget.sampler;
texDescriptor.imageView = offScreenFrameBuf.textureTarget.view;
std::vector<VkWriteDescriptorSet> sceneDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.scene,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.scene.descriptor),
// Binding 1 : Fragment shader shadow sampler
vkTools::initializers::writeDescriptorSet(
descriptorSets.scene,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor)
};
vkUpdateDescriptorSets(device, sceneDescriptorSets.size(), sceneDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_FRONT_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Solid rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
#ifdef USE_GLSL
shaderStages[0] = loadShaderGLSL("./../data/shaders/shadowmapping/quad.vert", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShaderGLSL("./../data/shaders/shadowmapping/quad.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[0] = loadShader("./../data/shaders/shadowmapping/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/shadowmapping/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayouts.quad,
renderPass,
0);
rasterizationState.cullMode = VK_CULL_MODE_NONE;
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.quad);
assert(!err);
// 3D scene
#ifdef USE_GLSL
shaderStages[0] = loadShaderGLSL("./../data/shaders/shadowmapping/scene.vert", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShaderGLSL("./../data/shaders/shadowmapping/scene.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[0] = loadShader("./../data/shaders/shadowmapping/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/shadowmapping/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
rasterizationState.cullMode = VK_CULL_MODE_NONE;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.scene);
assert(!err);
// Offscreen pipeline
#ifdef USE_GLSL
shaderStages[0] = loadShaderGLSL("./../data/shaders/shadowmapping/offscreen.vert", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShaderGLSL("./../data/shaders/shadowmapping/offscreen.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[0] = loadShader("./../data/shaders/shadowmapping/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/shadowmapping/offscreen.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
pipelineCreateInfo.layout = pipelineLayouts.offscreen;
// Cull front faces
depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
// Enable depth bias
rasterizationState.depthBiasEnable = VK_TRUE;
// Add depth bias to dynamic state, so we can change it at runtime
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_DEPTH_BIAS);
dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen);
assert(!err);
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Debug quad vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVSscene),
nullptr,
&uniformDataVS.buffer,
&uniformDataVS.memory,
&uniformDataVS.descriptor);
// Offsvreen vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboOffscreenVS),
nullptr,
&uniformDataOffscreenVS.buffer,
&uniformDataOffscreenVS.memory,
&uniformDataOffscreenVS.descriptor);
// Scene vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVSscene),
nullptr,
&uniformData.scene.buffer,
&uniformData.scene.memory,
&uniformData.scene.descriptor);
updateLight();
updateUniformBufferOffscreen();
updateUniformBuffers();
}
void updateLight()
{
// Animate the light source
lightPos.x = cos(glm::radians(timer * 360.0f)) * 40.0f;
lightPos.y = -50.0f + sin(glm::radians(timer * 360.0f)) * 20.0f;
lightPos.z = 25.0f + sin(glm::radians(timer * 360.0f)) * 5.0f;
}
void updateUniformBuffers()
{
// Shadow map debug quad
float AR = (float)height / (float)width;
uboVSquad.projection = glm::ortho(0.0f, 2.5f / AR, 0.0f, 2.5f, -1.0f, 1.0f);
uboVSquad.model = glm::mat4();
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVSquad), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVSquad, sizeof(uboVSquad));
vkUnmapMemory(device, uniformDataVS.memory);
// 3D scene
uboVSscene.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, zNear, zFar);
uboVSscene.view = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
uboVSscene.view = glm::rotate(uboVSscene.view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVSscene.view = glm::rotate(uboVSscene.view, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVSscene.view = glm::rotate(uboVSscene.view, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
uboVSscene.model = glm::mat4();
uboVSscene.lightPos = lightPos;
// Render scene from light's point of view
if (lightPOV)
{
uboVSscene.projection = glm::perspective(glm::radians(lightFOV), (float)width / (float)height, zNear, zFar);
uboVSscene.view = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(0, 1, 0));
}
uboVSscene.depthBiasMVP = uboOffscreenVS.depthMVP;
pData;
err = vkMapMemory(device, uniformData.scene.memory, 0, sizeof(uboVSscene), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVSscene, sizeof(uboVSscene));
vkUnmapMemory(device, uniformData.scene.memory);
}
void updateUniformBufferOffscreen()
{
// Matrix from light's point of view
glm::mat4 depthProjectionMatrix = glm::perspective(glm::radians(lightFOV), 1.0f, zNear, zFar);
glm::mat4 depthViewMatrix = glm::lookAt(lightPos, glm::vec3(0, 0, 0), glm::vec3(0, 1, 0));
glm::mat4 depthModelMatrix = glm::mat4();
uboOffscreenVS.depthMVP = depthProjectionMatrix * depthViewMatrix * depthModelMatrix;
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataOffscreenVS.memory, 0, sizeof(uboOffscreenVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboOffscreenVS, sizeof(uboOffscreenVS));
vkUnmapMemory(device, uniformDataOffscreenVS.memory);
}
// Copy offscreen depth frame buffer contents to the depth texture
void updateTexture()
{
// Make sure color writes to the framebuffer are finished before using it as transfer source
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
// Transform texture target to transfer source
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.textureTarget.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageCopy imgCopy = {};
imgCopy.srcSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
imgCopy.srcSubresource.mipLevel = 0;
imgCopy.srcSubresource.baseArrayLayer = 0;
imgCopy.srcSubresource.layerCount = 1;
imgCopy.srcOffset = { 0, 0, 0 };
imgCopy.dstSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
imgCopy.dstSubresource.mipLevel = 0;
imgCopy.dstSubresource.baseArrayLayer = 0;
imgCopy.dstSubresource.layerCount = 1;
imgCopy.dstOffset = { 0, 0, 0 };
imgCopy.extent.width = TEX_DIM;
imgCopy.extent.height = TEX_DIM;
imgCopy.extent.depth = 1;
vkCmdCopyImage(
offScreenCmdBuffer,
offScreenFrameBuf.depth.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
offScreenFrameBuf.textureTarget.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&imgCopy);
// Transform framebuffer color attachment back
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
// Transform texture target back to shader read
// Makes sure that writes to the textuer are finished before
// it's accessed in the shader
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.textureTarget.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
void prepare()
{
VulkanExampleBase::prepare();
generateQuad();
loadMeshes();
setupVertexDescriptions();
prepareUniformBuffers();
prepareTextureTarget(TEX_DIM, TEX_DIM, DEPTH_FORMAT);
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
prepareOffscreenFramebuffer();
buildCommandBuffers();
buildOffscreenCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
if (!paused)
{
updateLight();
updateUniformBufferOffscreen();
updateUniformBuffers();
}
}
virtual void viewChanged()
{
updateUniformBufferOffscreen();
updateUniformBuffers();
}
void toggleShadowMapDisplay()
{
displayShadowMap = !displayShadowMap;
buildCommandBuffers();
}
void toogleLightPOV()
{
lightPOV = !lightPOV;
viewChanged();
}
};
VulkanExample *vulkanExample;
#ifdef _WIN32
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
if (uMsg == WM_KEYDOWN)
{
switch (wParam)
{
case 0x53:
vulkanExample->toggleShadowMapDisplay();
break;
case 0x4C:
vulkanExample->toogleLightPOV();
break;
}
}
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#else
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
#ifdef _WIN32
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#else
int main(const int argc, const char *argv[])
#endif
{
vulkanExample = new VulkanExample();
#ifdef _WIN32
vulkanExample->setupWindow(hInstance, WndProc);
#else
vulkanExample->setupWindow();
#endif
vulkanExample->initSwapchain();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}