procedural-3d-engine/examples/computeshader/computeshader.cpp
ShoufengYang fb4187a916
Update computeshader.cpp
There is a logical error that cause the first frame render error.  Since the graphic rendering need to sample the compute shader 's output image, so the compute command need to run  before the graphic rendering. If not, the graphic rendering will sample the gabage data (computer's output image) for the first frame and present on the display screen.This issue can be easy to be reproduced when the GPU device has a lower performance.
2021-08-03 23:04:40 +08:00

668 lines
27 KiB
C++

/*
* Vulkan Example - Compute shader image processing
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout for this example
struct Vertex {
float pos[3];
float uv[2];
};
class VulkanExample : public VulkanExampleBase
{
private:
vks::Texture2D textureColorMap;
vks::Texture2D textureComputeTarget;
public:
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
// Resources for the graphics part of the example
struct {
VkDescriptorSetLayout descriptorSetLayout; // Image display shader binding layout
VkDescriptorSet descriptorSetPreCompute; // Image display shader bindings before compute shader image manipulation
VkDescriptorSet descriptorSetPostCompute; // Image display shader bindings after compute shader image manipulation
VkPipeline pipeline; // Image display pipeline
VkPipelineLayout pipelineLayout; // Layout of the graphics pipeline
VkSemaphore semaphore; // Execution dependency between compute & graphic submission
} graphics;
// Resources for the compute part of the example
struct Compute {
VkQueue queue; // Separate queue for compute commands (queue family may differ from the one used for graphics)
VkCommandPool commandPool; // Use a separate command pool (queue family may differ from the one used for graphics)
VkCommandBuffer commandBuffer; // Command buffer storing the dispatch commands and barriers
VkSemaphore semaphore; // Execution dependency between compute & graphic submission
VkDescriptorSetLayout descriptorSetLayout; // Compute shader binding layout
VkDescriptorSet descriptorSet; // Compute shader bindings
VkPipelineLayout pipelineLayout; // Layout of the compute pipeline
std::vector<VkPipeline> pipelines; // Compute pipelines for image filters
int32_t pipelineIndex = 0; // Current image filtering compute pipeline index
} compute;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount;
vks::Buffer uniformBufferVS;
struct {
glm::mat4 projection;
glm::mat4 modelView;
} uboVS;
int vertexBufferSize;
std::vector<std::string> shaderNames;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Compute shader image load/store";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -2.0f));
camera.setRotation(glm::vec3(0.0f));
camera.setPerspective(60.0f, (float)width * 0.5f / (float)height, 1.0f, 256.0f);
settings.overlay = true;
}
~VulkanExample()
{
// Graphics
vkDestroyPipeline(device, graphics.pipeline, nullptr);
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
vkDestroySemaphore(device, graphics.semaphore, nullptr);
// Compute
for (auto& pipeline : compute.pipelines)
{
vkDestroyPipeline(device, pipeline, nullptr);
}
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroySemaphore(device, compute.semaphore, nullptr);
vkDestroyCommandPool(device, compute.commandPool, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBufferVS.destroy();
textureColorMap.destroy();
textureComputeTarget.destroy();
}
// Prepare a texture target that is used to store compute shader calculations
void prepareTextureTarget(vks::Texture *tex, uint32_t width, uint32_t height, VkFormat format)
{
VkFormatProperties formatProperties;
// Get device properties for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Check if requested image format supports image storage operations
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT);
// Prepare blit target texture
tex->width = width;
tex->height = height;
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
// Image will be sampled in the fragment shader and used as storage target in the compute shader
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
imageCreateInfo.flags = 0;
// If compute and graphics queue family indices differ, we create an image that can be shared between them
// This can result in worse performance than exclusive sharing mode, but save some synchronization to keep the sample simple
std::vector<uint32_t> queueFamilyIndices;
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute) {
queueFamilyIndices = {
vulkanDevice->queueFamilyIndices.graphics,
vulkanDevice->queueFamilyIndices.compute
};
imageCreateInfo.sharingMode = VK_SHARING_MODE_CONCURRENT;
imageCreateInfo.queueFamilyIndexCount = 2;
imageCreateInfo.pQueueFamilyIndices = queueFamilyIndices.data();
}
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &tex->image));
vkGetImageMemoryRequirements(device, tex->image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &tex->deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, tex->image, tex->deviceMemory, 0));
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
tex->imageLayout = VK_IMAGE_LAYOUT_GENERAL;
vks::tools::setImageLayout(
layoutCmd, tex->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
tex->imageLayout);
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
// Create sampler
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 1.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = tex->mipLevels;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &tex->sampler));
// Create image view
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.image = tex->image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &tex->view));
// Initialize a descriptor for later use
tex->descriptor.imageLayout = tex->imageLayout;
tex->descriptor.imageView = tex->view;
tex->descriptor.sampler = tex->sampler;
tex->device = vulkanDevice;
}
void loadAssets()
{
textureColorMap.loadFromFile(getAssetPath() + "textures/vulkan_11_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT, VK_IMAGE_LAYOUT_GENERAL);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Image memory barrier to make sure that compute shader writes are finished before sampling from the texture
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
// We won't be changing the layout of the image
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = textureComputeTarget.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageMemoryBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imageMemoryBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width * 0.5f, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
// Left (pre compute)
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSetPreCompute, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipeline);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
// Right (post compute)
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSetPostCompute, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipeline);
viewport.x = (float)width / 2.0f;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void buildComputeCommandBuffer()
{
// Flush the queue if we're rebuilding the command buffer after a pipeline change to ensure it's not currently in use
vkQueueWaitIdle(compute.queue);
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffer, &cmdBufInfo));
vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelines[compute.pipelineIndex]);
vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0);
vkCmdDispatch(compute.commandBuffer, textureComputeTarget.width / 16, textureComputeTarget.height / 16, 1);
vkEndCommandBuffer(compute.commandBuffer);
}
// Setup vertices for a single uv-mapped quad
void generateQuad()
{
// Setup vertices for a single uv-mapped quad made from two triangles
std::vector<Vertex> vertices =
{
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f } },
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f } },
{ { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f } },
{ { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f } }
};
// Setup indices
std::vector<uint32_t> indices = { 0,1,2, 2,3,0 };
indexCount = static_cast<uint32_t>(indices.size());
// Create buffers
// For the sake of simplicity we won't stage the vertex data to the gpu memory
// Vertex buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&vertexBuffer,
vertices.size() * sizeof(Vertex),
vertices.data()));
// Index buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indexBuffer,
indices.size() * sizeof(uint32_t),
indices.data()));
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions = {
vks::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX)
};
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions = {
// Location 0: Position
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)),
// Location 1: Texture coordinates
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv)),
};
// Assign to vertex buffer
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
// Graphics pipelines uniform buffers
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
// Graphics pipelines image samplers for displaying compute output image
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2),
// Compute pipelines uses a storage image for image reads and writes
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 2),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1: Fragment shader input image
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
// Input image (before compute post processing)
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSetPreCompute));
std::vector<VkWriteDescriptorSet> baseImageWriteDescriptorSets = {
vks::initializers::writeDescriptorSet(graphics.descriptorSetPreCompute, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor),
vks::initializers::writeDescriptorSet(graphics.descriptorSetPreCompute, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureColorMap.descriptor)
};
vkUpdateDescriptorSets(device, baseImageWriteDescriptorSets.size(), baseImageWriteDescriptorSets.data(), 0, nullptr);
// Final image (after compute shader processing)
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSetPostCompute));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(graphics.descriptorSetPostCompute, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor),
vks::initializers::writeDescriptorSet(graphics.descriptorSetPostCompute, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureComputeTarget.descriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "computeshader/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "computeshader/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
graphics.pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipeline));
}
void prepareGraphics()
{
// Semaphore for compute & graphics sync
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &graphics.semaphore));
// Signal the semaphore
VkSubmitInfo submitInfo = vks::initializers::submitInfo();
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &graphics.semaphore;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VK_CHECK_RESULT(vkQueueWaitIdle(queue));
}
void prepareCompute()
{
// Get a compute queue from the device
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
// Create compute pipeline
// Compute pipelines are created separate from graphics pipelines even if they use the same queue
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0: Input image (read-only)
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT, 0),
// Binding 1: Output image (write)
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT, 1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet));
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets = {
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 0, &textureColorMap.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &textureComputeTarget.descriptor)
};
vkUpdateDescriptorSets(device, computeWriteDescriptorSets.size(), computeWriteDescriptorSets.data(), 0, NULL);
// Create compute shader pipelines
VkComputePipelineCreateInfo computePipelineCreateInfo =
vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
// One pipeline for each effect
shaderNames = { "emboss", "edgedetect", "sharpen" };
for (auto& shaderName : shaderNames) {
std::string fileName = getShadersPath() + "computeshader/" + shaderName + ".comp.spv";
computePipelineCreateInfo.stage = loadShader(fileName, VK_SHADER_STAGE_COMPUTE_BIT);
VkPipeline pipeline;
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &pipeline));
compute.pipelines.push_back(pipeline);
}
// Separate command pool as queue family for compute may be different than graphics
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
// Create a command buffer for compute operations
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vks::initializers::commandBufferAllocateInfo(
compute.commandPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffer));
// Semaphore for compute & graphics sync
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphore));
// Build a single command buffer containing the compute dispatch commands
buildComputeCommandBuffer();
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBufferVS,
sizeof(uboVS)));
// Map persistent
VK_CHECK_RESULT(uniformBufferVS.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVS.projection = camera.matrices.perspective;
uboVS.modelView = camera.matrices.view;
memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS));
}
void draw()
{
// Wait for rendering finished
VkPipelineStageFlags waitStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
// Submit compute commands
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &compute.commandBuffer;
computeSubmitInfo.waitSemaphoreCount = 1;
computeSubmitInfo.pWaitSemaphores = &graphics.semaphore;
computeSubmitInfo.pWaitDstStageMask = &waitStageMask;
computeSubmitInfo.signalSemaphoreCount = 1;
computeSubmitInfo.pSignalSemaphores = &compute.semaphore;
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE));
VulkanExampleBase::prepareFrame();
VkPipelineStageFlags graphicsWaitStageMasks[] = { VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
VkSemaphore graphicsWaitSemaphores[] = { compute.semaphore, semaphores.presentComplete };
VkSemaphore graphicsSignalSemaphores[] = { graphics.semaphore, semaphores.renderComplete };
// Submit graphics commands
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
submitInfo.waitSemaphoreCount = 2;
submitInfo.pWaitSemaphores = graphicsWaitSemaphores;
submitInfo.pWaitDstStageMask = graphicsWaitStageMasks;
submitInfo.signalSemaphoreCount = 2;
submitInfo.pSignalSemaphores = graphicsSignalSemaphores;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
generateQuad();
setupVertexDescriptions();
prepareUniformBuffers();
prepareTextureTarget(&textureComputeTarget, textureColorMap.width, textureColorMap.height, VK_FORMAT_R8G8B8A8_UNORM);
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
prepareGraphics();
prepareCompute();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated) {
updateUniformBuffers();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->comboBox("Shader", &compute.pipelineIndex, shaderNames)) {
buildComputeCommandBuffer();
}
}
}
};
VULKAN_EXAMPLE_MAIN()