* Apply a random seed when NOT in benchmark mode to have 100% deterministic runs These samples lack the check for benchmark.active when applying a random seed, which is done for other samples. * Update texture3d.cpp
871 lines
35 KiB
C++
871 lines
35 KiB
C++
/*
|
|
* Vulkan Example - Sparse texture residency example
|
|
*
|
|
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
/*
|
|
* Important note : This sample is work-in-progress and works basically, but it's not finished
|
|
*/
|
|
|
|
#include "texturesparseresidency.h"
|
|
|
|
/*
|
|
Virtual texture page
|
|
Contains all functions and objects for a single page of a virtual texture
|
|
*/
|
|
|
|
VirtualTexturePage::VirtualTexturePage()
|
|
{
|
|
// Pages are initially not backed up by memory (non-resident)
|
|
imageMemoryBind.memory = VK_NULL_HANDLE;
|
|
}
|
|
|
|
bool VirtualTexturePage::resident()
|
|
{
|
|
return (imageMemoryBind.memory != VK_NULL_HANDLE);
|
|
}
|
|
|
|
// Allocate Vulkan memory for the virtual page
|
|
bool VirtualTexturePage::allocate(VkDevice device, uint32_t memoryTypeIndex)
|
|
{
|
|
if (imageMemoryBind.memory != VK_NULL_HANDLE)
|
|
{
|
|
return false;
|
|
};
|
|
|
|
imageMemoryBind = {};
|
|
|
|
VkMemoryAllocateInfo allocInfo = vks::initializers::memoryAllocateInfo();
|
|
allocInfo.allocationSize = size;
|
|
allocInfo.memoryTypeIndex = memoryTypeIndex;
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &imageMemoryBind.memory));
|
|
|
|
VkImageSubresource subResource{};
|
|
subResource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
subResource.mipLevel = mipLevel;
|
|
subResource.arrayLayer = layer;
|
|
|
|
// Sparse image memory binding
|
|
imageMemoryBind.subresource = subResource;
|
|
imageMemoryBind.extent = extent;
|
|
imageMemoryBind.offset = offset;
|
|
return true;
|
|
}
|
|
|
|
// Release Vulkan memory allocated for this page
|
|
bool VirtualTexturePage::release(VkDevice device)
|
|
{
|
|
del= false;
|
|
if (imageMemoryBind.memory != VK_NULL_HANDLE)
|
|
{
|
|
vkFreeMemory(device, imageMemoryBind.memory, nullptr);
|
|
imageMemoryBind.memory = VK_NULL_HANDLE;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
Virtual texture
|
|
Contains the virtual pages and memory binding information for a whole virtual texture
|
|
*/
|
|
|
|
VirtualTexturePage* VirtualTexture::addPage(VkOffset3D offset, VkExtent3D extent, const VkDeviceSize size, const uint32_t mipLevel, uint32_t layer)
|
|
{
|
|
VirtualTexturePage newPage{};
|
|
newPage.offset = offset;
|
|
newPage.extent = extent;
|
|
newPage.size = size;
|
|
newPage.mipLevel = mipLevel;
|
|
newPage.layer = layer;
|
|
newPage.index = static_cast<uint32_t>(pages.size());
|
|
newPage.imageMemoryBind = {};
|
|
newPage.imageMemoryBind.offset = offset;
|
|
newPage.imageMemoryBind.extent = extent;
|
|
newPage.del = false;
|
|
pages.push_back(newPage);
|
|
return &pages.back();
|
|
}
|
|
|
|
// Call before sparse binding to update memory bind list etc.
|
|
void VirtualTexture::updateSparseBindInfo(std::vector<VirtualTexturePage> &bindingChangedPages, bool del)
|
|
{
|
|
// Update list of memory-backed sparse image memory binds
|
|
//sparseImageMemoryBinds.resize(pages.size());
|
|
sparseImageMemoryBinds.clear();
|
|
for (auto page : bindingChangedPages)
|
|
{
|
|
sparseImageMemoryBinds.push_back(page.imageMemoryBind);
|
|
if (del)
|
|
{
|
|
sparseImageMemoryBinds[sparseImageMemoryBinds.size() - 1].memory = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
// Update sparse bind info
|
|
bindSparseInfo = vks::initializers::bindSparseInfo();
|
|
// todo: Semaphore for queue submission
|
|
// bindSparseInfo.signalSemaphoreCount = 1;
|
|
// bindSparseInfo.pSignalSemaphores = &bindSparseSemaphore;
|
|
|
|
// Image memory binds
|
|
imageMemoryBindInfo = {};
|
|
imageMemoryBindInfo.image = image;
|
|
imageMemoryBindInfo.bindCount = static_cast<uint32_t>(sparseImageMemoryBinds.size());
|
|
imageMemoryBindInfo.pBinds = sparseImageMemoryBinds.data();
|
|
bindSparseInfo.imageBindCount = (imageMemoryBindInfo.bindCount > 0) ? 1 : 0;
|
|
bindSparseInfo.pImageBinds = &imageMemoryBindInfo;
|
|
|
|
// Opaque image memory binds for the mip tail
|
|
opaqueMemoryBindInfo.image = image;
|
|
opaqueMemoryBindInfo.bindCount = static_cast<uint32_t>(opaqueMemoryBinds.size());
|
|
opaqueMemoryBindInfo.pBinds = opaqueMemoryBinds.data();
|
|
bindSparseInfo.imageOpaqueBindCount = (opaqueMemoryBindInfo.bindCount > 0) ? 1 : 0;
|
|
bindSparseInfo.pImageOpaqueBinds = &opaqueMemoryBindInfo;
|
|
}
|
|
|
|
// Release all Vulkan resources
|
|
void VirtualTexture::destroy()
|
|
{
|
|
for (auto page : pages)
|
|
{
|
|
page.release(device);
|
|
}
|
|
for (auto bind : opaqueMemoryBinds)
|
|
{
|
|
vkFreeMemory(device, bind.memory, nullptr);
|
|
}
|
|
// Clean up mip tail
|
|
if (mipTailimageMemoryBind.memory != VK_NULL_HANDLE) {
|
|
vkFreeMemory(device, mipTailimageMemoryBind.memory, nullptr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Vulkan Example class
|
|
*/
|
|
VulkanExample::VulkanExample() : VulkanExampleBase()
|
|
{
|
|
title = "Sparse texture residency";
|
|
std::cout.imbue(std::locale(""));
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.setPosition(glm::vec3(0.0f, 0.0f, -12.0f));
|
|
camera.setRotation(glm::vec3(-90.0f, 0.0f, 0.0f));
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
|
}
|
|
|
|
VulkanExample::~VulkanExample()
|
|
{
|
|
// Clean up used Vulkan resources
|
|
// Note : Inherited destructor cleans up resources stored in base class
|
|
destroyTextureImage(texture);
|
|
vkDestroySemaphore(device, bindSparseSemaphore, nullptr);
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
uniformBuffer.destroy();
|
|
}
|
|
|
|
void VulkanExample::getEnabledFeatures()
|
|
{
|
|
if (deviceFeatures.sparseBinding && deviceFeatures.sparseResidencyImage2D) {
|
|
enabledFeatures.shaderResourceResidency = VK_TRUE;
|
|
enabledFeatures.sparseBinding = VK_TRUE;
|
|
enabledFeatures.sparseResidencyImage2D = VK_TRUE;
|
|
}
|
|
else {
|
|
std::cout << "Sparse binding not supported" << std::endl;
|
|
}
|
|
}
|
|
|
|
glm::uvec3 VulkanExample::alignedDivision(const VkExtent3D& extent, const VkExtent3D& granularity)
|
|
{
|
|
glm::uvec3 res;
|
|
res.x = extent.width / granularity.width + ((extent.width % granularity.width) ? 1u : 0u);
|
|
res.y = extent.height / granularity.height + ((extent.height % granularity.height) ? 1u : 0u);
|
|
res.z = extent.depth / granularity.depth + ((extent.depth % granularity.depth) ? 1u : 0u);
|
|
return res;
|
|
}
|
|
|
|
void VulkanExample::prepareSparseTexture(uint32_t width, uint32_t height, uint32_t layerCount, VkFormat format)
|
|
{
|
|
texture.device = vulkanDevice->logicalDevice;
|
|
texture.width = width;
|
|
texture.height = height;
|
|
texture.mipLevels = static_cast<uint32_t>(floor(log2(std::max(width, height))) + 1);
|
|
texture.layerCount = layerCount;
|
|
texture.format = format;
|
|
|
|
texture.subRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, texture.mipLevels, 0, 1 };
|
|
// Get device properties for the requested texture format
|
|
VkFormatProperties formatProperties;
|
|
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
|
|
|
|
const VkImageType imageType = VK_IMAGE_TYPE_2D;
|
|
const VkSampleCountFlagBits sampleCount = VK_SAMPLE_COUNT_1_BIT;
|
|
const VkImageUsageFlags imageUsage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
const VkImageTiling imageTiling = VK_IMAGE_TILING_OPTIMAL;
|
|
|
|
// Get sparse image properties
|
|
std::vector<VkSparseImageFormatProperties> sparseProperties;
|
|
// Sparse properties count for the desired format
|
|
uint32_t sparsePropertiesCount;
|
|
vkGetPhysicalDeviceSparseImageFormatProperties(physicalDevice, format, imageType, sampleCount, imageUsage, imageTiling, &sparsePropertiesCount, nullptr);
|
|
// Check if sparse is supported for this format
|
|
if (sparsePropertiesCount == 0)
|
|
{
|
|
std::cout << "Error: Requested format does not support sparse features!" << std::endl;
|
|
return;
|
|
}
|
|
|
|
// Get actual image format properties
|
|
sparseProperties.resize(sparsePropertiesCount);
|
|
vkGetPhysicalDeviceSparseImageFormatProperties(physicalDevice, format, imageType, sampleCount, imageUsage, imageTiling, &sparsePropertiesCount, sparseProperties.data());
|
|
|
|
std::cout << "Sparse image format properties: " << sparsePropertiesCount << std::endl;
|
|
for (auto props : sparseProperties)
|
|
{
|
|
std::cout << "\t Image granularity: w = " << props.imageGranularity.width << " h = " << props.imageGranularity.height << " d = " << props.imageGranularity.depth << std::endl;
|
|
std::cout << "\t Aspect mask: " << props.aspectMask << std::endl;
|
|
std::cout << "\t Flags: " << props.flags << std::endl;
|
|
}
|
|
|
|
// Create sparse image
|
|
VkImageCreateInfo sparseImageCreateInfo = vks::initializers::imageCreateInfo();
|
|
sparseImageCreateInfo.imageType = imageType;
|
|
sparseImageCreateInfo.format = texture.format;
|
|
sparseImageCreateInfo.mipLevels = texture.mipLevels;
|
|
sparseImageCreateInfo.arrayLayers = texture.layerCount;
|
|
sparseImageCreateInfo.samples = sampleCount;
|
|
sparseImageCreateInfo.tiling = imageTiling;
|
|
sparseImageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
sparseImageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
sparseImageCreateInfo.extent = { texture.width, texture.height, 1 };
|
|
sparseImageCreateInfo.usage = imageUsage;
|
|
sparseImageCreateInfo.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT;
|
|
VK_CHECK_RESULT(vkCreateImage(device, &sparseImageCreateInfo, nullptr, &texture.image));
|
|
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
vks::tools::setImageLayout(copyCmd, texture.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, texture.subRange);
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue);
|
|
|
|
// Get memory requirements
|
|
VkMemoryRequirements sparseImageMemoryReqs;
|
|
// Sparse image memory requirement counts
|
|
vkGetImageMemoryRequirements(device, texture.image, &sparseImageMemoryReqs);
|
|
|
|
std::cout << "Image memory requirements:" << std::endl;
|
|
std::cout << "\t Size: " << sparseImageMemoryReqs.size << std::endl;
|
|
std::cout << "\t Alignment: " << sparseImageMemoryReqs.alignment << std::endl;
|
|
|
|
// Check requested image size against hardware sparse limit
|
|
if (sparseImageMemoryReqs.size > vulkanDevice->properties.limits.sparseAddressSpaceSize)
|
|
{
|
|
std::cout << "Error: Requested sparse image size exceeds supports sparse address space size!" << std::endl;
|
|
return;
|
|
};
|
|
|
|
// Get sparse memory requirements
|
|
// Count
|
|
uint32_t sparseMemoryReqsCount = 32;
|
|
std::vector<VkSparseImageMemoryRequirements> sparseMemoryReqs(sparseMemoryReqsCount);
|
|
vkGetImageSparseMemoryRequirements(device, texture.image, &sparseMemoryReqsCount, sparseMemoryReqs.data());
|
|
if (sparseMemoryReqsCount == 0)
|
|
{
|
|
std::cout << "Error: No memory requirements for the sparse image!" << std::endl;
|
|
return;
|
|
}
|
|
sparseMemoryReqs.resize(sparseMemoryReqsCount);
|
|
// Get actual requirements
|
|
vkGetImageSparseMemoryRequirements(device, texture.image, &sparseMemoryReqsCount, sparseMemoryReqs.data());
|
|
|
|
std::cout << "Sparse image memory requirements: " << sparseMemoryReqsCount << std::endl;
|
|
for (auto reqs : sparseMemoryReqs)
|
|
{
|
|
std::cout << "\t Image granularity: w = " << reqs.formatProperties.imageGranularity.width << " h = " << reqs.formatProperties.imageGranularity.height << " d = " << reqs.formatProperties.imageGranularity.depth << std::endl;
|
|
std::cout << "\t Mip tail first LOD: " << reqs.imageMipTailFirstLod << std::endl;
|
|
std::cout << "\t Mip tail size: " << reqs.imageMipTailSize << std::endl;
|
|
std::cout << "\t Mip tail offset: " << reqs.imageMipTailOffset << std::endl;
|
|
std::cout << "\t Mip tail stride: " << reqs.imageMipTailStride << std::endl;
|
|
//todo:multiple reqs
|
|
texture.mipTailStart = reqs.imageMipTailFirstLod;
|
|
}
|
|
|
|
// Get sparse image requirements for the color aspect
|
|
VkSparseImageMemoryRequirements sparseMemoryReq;
|
|
bool colorAspectFound = false;
|
|
for (auto reqs : sparseMemoryReqs)
|
|
{
|
|
if (reqs.formatProperties.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT)
|
|
{
|
|
sparseMemoryReq = reqs;
|
|
colorAspectFound = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!colorAspectFound)
|
|
{
|
|
std::cout << "Error: Could not find sparse image memory requirements for color aspect bit!" << std::endl;
|
|
return;
|
|
}
|
|
|
|
// @todo: proper comment
|
|
// Calculate number of required sparse memory bindings by alignment
|
|
assert((sparseImageMemoryReqs.size % sparseImageMemoryReqs.alignment) == 0);
|
|
texture.memoryTypeIndex = vulkanDevice->getMemoryType(sparseImageMemoryReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
texture.sparseImageMemoryRequirements = sparseMemoryReq;
|
|
|
|
// The mip tail contains all mip levels > sparseMemoryReq.imageMipTailFirstLod
|
|
// Check if the format has a single mip tail for all layers or one mip tail for each layer
|
|
// @todo: Comment
|
|
texture.mipTailInfo.singleMipTail = sparseMemoryReq.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT;
|
|
texture.mipTailInfo.alingedMipSize = sparseMemoryReq.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT;
|
|
|
|
// Sparse bindings for each mip level of all layers outside of the mip tail
|
|
for (uint32_t layer = 0; layer < texture.layerCount; layer++)
|
|
{
|
|
// sparseMemoryReq.imageMipTailFirstLod is the first mip level that's stored inside the mip tail
|
|
for (uint32_t mipLevel = 0; mipLevel < sparseMemoryReq.imageMipTailFirstLod; mipLevel++)
|
|
{
|
|
VkExtent3D extent;
|
|
extent.width = std::max(sparseImageCreateInfo.extent.width >> mipLevel, 1u);
|
|
extent.height = std::max(sparseImageCreateInfo.extent.height >> mipLevel, 1u);
|
|
extent.depth = std::max(sparseImageCreateInfo.extent.depth >> mipLevel, 1u);
|
|
|
|
VkImageSubresource subResource{};
|
|
subResource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
subResource.mipLevel = mipLevel;
|
|
subResource.arrayLayer = layer;
|
|
|
|
// Aligned sizes by image granularity
|
|
VkExtent3D imageGranularity = sparseMemoryReq.formatProperties.imageGranularity;
|
|
glm::uvec3 sparseBindCounts = alignedDivision(extent, imageGranularity);
|
|
glm::uvec3 lastBlockExtent;
|
|
lastBlockExtent.x = (extent.width % imageGranularity.width) ? extent.width % imageGranularity.width : imageGranularity.width;
|
|
lastBlockExtent.y = (extent.height % imageGranularity.height) ? extent.height % imageGranularity.height : imageGranularity.height;
|
|
lastBlockExtent.z = (extent.depth % imageGranularity.depth) ? extent.depth % imageGranularity.depth : imageGranularity.depth;
|
|
|
|
// @todo: Comment
|
|
uint32_t index = 0;
|
|
for (uint32_t z = 0; z < sparseBindCounts.z; z++)
|
|
{
|
|
for (uint32_t y = 0; y < sparseBindCounts.y; y++)
|
|
{
|
|
for (uint32_t x = 0; x < sparseBindCounts.x; x++)
|
|
{
|
|
// Offset
|
|
VkOffset3D offset;
|
|
offset.x = x * imageGranularity.width;
|
|
offset.y = y * imageGranularity.height;
|
|
offset.z = z * imageGranularity.depth;
|
|
// Size of the page
|
|
VkExtent3D extent;
|
|
extent.width = (x == sparseBindCounts.x - 1) ? lastBlockExtent.x : imageGranularity.width;
|
|
extent.height = (y == sparseBindCounts.y - 1) ? lastBlockExtent.y : imageGranularity.height;
|
|
extent.depth = (z == sparseBindCounts.z - 1) ? lastBlockExtent.z : imageGranularity.depth;
|
|
|
|
// Add new virtual page
|
|
VirtualTexturePage* newPage = texture.addPage(offset, extent, sparseImageMemoryReqs.alignment, mipLevel, layer);
|
|
newPage->imageMemoryBind.subresource = subResource;
|
|
|
|
index++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// @todo: proper comment
|
|
// @todo: store in mip tail and properly release
|
|
// @todo: Only one block for single mip tail
|
|
if ((!texture.mipTailInfo.singleMipTail) && (sparseMemoryReq.imageMipTailFirstLod < texture.mipLevels))
|
|
{
|
|
// Allocate memory for the mip tail
|
|
VkMemoryAllocateInfo allocInfo = vks::initializers::memoryAllocateInfo();
|
|
allocInfo.allocationSize = sparseMemoryReq.imageMipTailSize;
|
|
allocInfo.memoryTypeIndex = texture.memoryTypeIndex;
|
|
|
|
VkDeviceMemory deviceMemory;
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &deviceMemory));
|
|
|
|
// (Opaque) sparse memory binding
|
|
VkSparseMemoryBind sparseMemoryBind{};
|
|
sparseMemoryBind.resourceOffset = sparseMemoryReq.imageMipTailOffset + layer * sparseMemoryReq.imageMipTailStride;
|
|
sparseMemoryBind.size = sparseMemoryReq.imageMipTailSize;
|
|
sparseMemoryBind.memory = deviceMemory;
|
|
|
|
texture.opaqueMemoryBinds.push_back(sparseMemoryBind);
|
|
}
|
|
} // end layers and mips
|
|
|
|
std::cout << "Texture info:" << std::endl;
|
|
std::cout << "\tDim: " << texture.width << " x " << texture.height << std::endl;
|
|
std::cout << "\tVirtual pages: " << texture.pages.size() << std::endl;
|
|
|
|
// Check if format has one mip tail for all layers
|
|
if ((sparseMemoryReq.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && (sparseMemoryReq.imageMipTailFirstLod < texture.mipLevels))
|
|
{
|
|
// Allocate memory for the mip tail
|
|
VkMemoryAllocateInfo allocInfo = vks::initializers::memoryAllocateInfo();
|
|
allocInfo.allocationSize = sparseMemoryReq.imageMipTailSize;
|
|
allocInfo.memoryTypeIndex = texture.memoryTypeIndex;
|
|
|
|
VkDeviceMemory deviceMemory;
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &deviceMemory));
|
|
|
|
// (Opaque) sparse memory binding
|
|
VkSparseMemoryBind sparseMemoryBind{};
|
|
sparseMemoryBind.resourceOffset = sparseMemoryReq.imageMipTailOffset;
|
|
sparseMemoryBind.size = sparseMemoryReq.imageMipTailSize;
|
|
sparseMemoryBind.memory = deviceMemory;
|
|
|
|
texture.opaqueMemoryBinds.push_back(sparseMemoryBind);
|
|
}
|
|
|
|
// Create signal semaphore for sparse binding
|
|
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
|
|
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &bindSparseSemaphore));
|
|
|
|
// Prepare bind sparse info for reuse in queue submission
|
|
texture.updateSparseBindInfo(texture.pages);
|
|
|
|
// Bind to queue
|
|
// todo: in draw?
|
|
vkQueueBindSparse(queue, 1, &texture.bindSparseInfo, VK_NULL_HANDLE);
|
|
//todo: use sparse bind semaphore
|
|
vkQueueWaitIdle(queue);
|
|
|
|
// Create sampler
|
|
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
|
|
sampler.magFilter = VK_FILTER_LINEAR;
|
|
sampler.minFilter = VK_FILTER_LINEAR;
|
|
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
|
|
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
sampler.mipLodBias = 0.0f;
|
|
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
|
sampler.minLod = 0.0f;
|
|
sampler.maxLod = static_cast<float>(texture.mipLevels);
|
|
sampler.maxAnisotropy = vulkanDevice->features.samplerAnisotropy ? vulkanDevice->properties.limits.maxSamplerAnisotropy : 1.0f;
|
|
sampler.anisotropyEnable = false;
|
|
sampler.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler));
|
|
|
|
// Create image view
|
|
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
|
|
view.image = VK_NULL_HANDLE;
|
|
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
view.format = format;
|
|
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
view.subresourceRange.baseMipLevel = 0;
|
|
view.subresourceRange.baseArrayLayer = 0;
|
|
view.subresourceRange.layerCount = 1;
|
|
view.subresourceRange.levelCount = texture.mipLevels;
|
|
view.image = texture.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
|
|
|
|
// Fill image descriptor image info that can be used during the descriptor set setup
|
|
texture.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
texture.descriptor.imageView = texture.view;
|
|
texture.descriptor.sampler = texture.sampler;
|
|
}
|
|
|
|
// Free all Vulkan resources used a texture object
|
|
void VulkanExample::destroyTextureImage(SparseTexture texture)
|
|
{
|
|
vkDestroyImageView(device, texture.view, nullptr);
|
|
vkDestroyImage(device, texture.image, nullptr);
|
|
vkDestroySampler(device, texture.sampler, nullptr);
|
|
texture.destroy();
|
|
}
|
|
|
|
void VulkanExample::buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
plane.draw(drawCmdBuffers[i]);
|
|
|
|
drawUI(drawCmdBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void VulkanExample::loadAssets()
|
|
{
|
|
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
|
|
plane.loadFromFile(getAssetPath() + "models/plane.gltf", vulkanDevice, queue, glTFLoadingFlags);
|
|
}
|
|
|
|
void VulkanExample::setupDescriptors()
|
|
{
|
|
// Pool
|
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
|
|
};
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
|
|
// Layout
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
0),
|
|
// Binding 1 : Fragment shader image sampler
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
1)
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
|
|
// Sets
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
|
|
// Binding 1 : Fragment shader texture sampler
|
|
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texture.descriptor)
|
|
};
|
|
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
|
}
|
|
|
|
void VulkanExample::preparePipelines()
|
|
{
|
|
// Layout
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
|
|
// Pipeline
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
|
std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
|
|
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo( pipelineLayout, renderPass);
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCI.pRasterizationState = &rasterizationState;
|
|
pipelineCI.pColorBlendState = &colorBlendState;
|
|
pipelineCI.pMultisampleState = &multisampleState;
|
|
pipelineCI.pViewportState = &viewportState;
|
|
pipelineCI.pDepthStencilState = &depthStencilState;
|
|
pipelineCI.pDynamicState = &dynamicState;
|
|
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCI.pStages = shaderStages.data();
|
|
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV });
|
|
|
|
shaderStages[0] = loadShader(getShadersPath() + "texturesparseresidency/sparseresidency.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getShadersPath() + "texturesparseresidency/sparseresidency.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
|
|
}
|
|
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
void VulkanExample::prepareUniformBuffers()
|
|
{
|
|
// Vertex shader uniform buffer block
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(UniformData), &uniformData));
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void VulkanExample::updateUniformBuffers()
|
|
{
|
|
uniformData.projection = camera.matrices.perspective;
|
|
uniformData.model = camera.matrices.view;
|
|
uniformData.viewPos = camera.viewPos;
|
|
|
|
VK_CHECK_RESULT(uniformBuffer.map());
|
|
memcpy(uniformBuffer.mapped, &uniformData, sizeof(UniformData));
|
|
uniformBuffer.unmap();
|
|
}
|
|
|
|
void VulkanExample::prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
// Check if the GPU supports sparse residency for 2D images
|
|
if (!vulkanDevice->features.sparseResidencyImage2D) {
|
|
vks::tools::exitFatal("Device does not support sparse residency for 2D images!", VK_ERROR_FEATURE_NOT_PRESENT);
|
|
}
|
|
loadAssets();
|
|
prepareUniformBuffers();
|
|
// Create a virtual texture with max. possible dimension (does not take up any VRAM yet)
|
|
prepareSparseTexture(4096, 4096, 1, VK_FORMAT_R8G8B8A8_UNORM);
|
|
setupDescriptors();
|
|
preparePipelines();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
void VulkanExample::draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void VulkanExample::render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
updateUniformBuffers();
|
|
draw();
|
|
}
|
|
|
|
// Fills a buffer with random colors
|
|
void VulkanExample::randomPattern(uint8_t* buffer, uint32_t width, uint32_t height)
|
|
{
|
|
std::random_device rd;
|
|
std::mt19937 rndEngine(rd());
|
|
std::uniform_int_distribution<uint32_t> rndDist(0, 255);
|
|
uint8_t rndVal[4] = { 0, 0, 0, 0 };
|
|
while (rndVal[0] + rndVal[1] + rndVal[2] < 10) {
|
|
rndVal[0] = (uint8_t)rndDist(rndEngine);
|
|
rndVal[1] = (uint8_t)rndDist(rndEngine);
|
|
rndVal[2] = (uint8_t)rndDist(rndEngine);
|
|
}
|
|
rndVal[3] = 255;
|
|
for (uint32_t y = 0; y < height; y++) {
|
|
for (uint32_t x = 0; x < width; x++) {
|
|
for (uint32_t c = 0; c < 4; c++, ++buffer) {
|
|
*buffer = rndVal[c];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VulkanExample::uploadContent(VirtualTexturePage page, VkImage image)
|
|
{
|
|
// Generate some random image data and upload as a buffer
|
|
const size_t bufferSize = 4 * page.extent.width * page.extent.height;
|
|
|
|
vks::Buffer imageBuffer;
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&imageBuffer,
|
|
bufferSize));
|
|
imageBuffer.map();
|
|
|
|
uint8_t* data = (uint8_t*)imageBuffer.mapped;
|
|
randomPattern(data, page.extent.height, page.extent.width);
|
|
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
vks::tools::setImageLayout(copyCmd, image, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, texture.subRange, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
|
|
VkBufferImageCopy region{};
|
|
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
region.imageSubresource.layerCount = 1;
|
|
region.imageSubresource.mipLevel = page.mipLevel;
|
|
region.imageOffset = page.offset;
|
|
region.imageExtent = page.extent;
|
|
vkCmdCopyBufferToImage(copyCmd, imageBuffer.buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion);
|
|
vks::tools::setImageLayout(copyCmd, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, texture.subRange, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue);
|
|
|
|
imageBuffer.destroy();
|
|
}
|
|
|
|
void VulkanExample::fillRandomPages()
|
|
{
|
|
vkDeviceWaitIdle(device);
|
|
|
|
std::default_random_engine rndEngine(benchmark.active ? 0 : std::random_device{}());
|
|
std::uniform_real_distribution<float> rndDist(0.0f, 1.0f);
|
|
|
|
std::vector<VirtualTexturePage> updatedPages;
|
|
std::vector<VirtualTexturePage> bindingChangedPages;
|
|
for (auto& page : texture.pages) {
|
|
if (rndDist(rndEngine) < 0.5f) {
|
|
continue;
|
|
}
|
|
if (page.allocate(device, texture.memoryTypeIndex))
|
|
{
|
|
bindingChangedPages.push_back(page);
|
|
}
|
|
updatedPages.push_back(page);
|
|
}
|
|
|
|
// Update sparse queue binding
|
|
texture.updateSparseBindInfo(bindingChangedPages);
|
|
VkFenceCreateInfo fenceInfo = vks::initializers::fenceCreateInfo(VK_FLAGS_NONE);
|
|
VkFence fence;
|
|
VK_CHECK_RESULT(vkCreateFence(device, &fenceInfo, nullptr, &fence));
|
|
vkQueueBindSparse(queue, 1, &texture.bindSparseInfo, fence);
|
|
vkWaitForFences(device, 1, &fence, VK_TRUE, UINT64_MAX);
|
|
vkDestroyFence(device, fence, nullptr);
|
|
|
|
for (auto &page: updatedPages) {
|
|
uploadContent(page, texture.image);
|
|
}
|
|
}
|
|
|
|
void VulkanExample::fillMipTail()
|
|
{
|
|
// Clean up previous mip tail memory allocation
|
|
if (texture.mipTailimageMemoryBind.memory != VK_NULL_HANDLE) {
|
|
vkFreeMemory(device, texture.mipTailimageMemoryBind.memory, nullptr);
|
|
}
|
|
|
|
//@todo: WIP
|
|
VkDeviceSize imageMipTailSize = texture.sparseImageMemoryRequirements.imageMipTailSize;
|
|
VkDeviceSize imageMipTailOffset = texture.sparseImageMemoryRequirements.imageMipTailOffset;
|
|
// Stride between memory bindings for each mip level if not single mip tail (VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT not set)
|
|
VkDeviceSize imageMipTailStride = texture.sparseImageMemoryRequirements.imageMipTailStride;
|
|
|
|
VkMemoryAllocateInfo allocInfo = vks::initializers::memoryAllocateInfo();
|
|
allocInfo.allocationSize = imageMipTailSize;
|
|
allocInfo.memoryTypeIndex = texture.memoryTypeIndex;
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &texture.mipTailimageMemoryBind.memory));
|
|
|
|
uint32_t mipLevel = texture.sparseImageMemoryRequirements.imageMipTailFirstLod;
|
|
uint32_t width = std::max(texture.width >> texture.sparseImageMemoryRequirements.imageMipTailFirstLod, 1u);
|
|
uint32_t height = std::max(texture.height >> texture.sparseImageMemoryRequirements.imageMipTailFirstLod, 1u);
|
|
uint32_t depth = 1;
|
|
|
|
for (uint32_t i = texture.mipTailStart; i < texture.mipLevels; i++) {
|
|
|
|
const uint32_t width = std::max(texture.width >> i, 1u);
|
|
const uint32_t height = std::max(texture.height >> i, 1u);
|
|
|
|
// Generate some random image data and upload as a buffer
|
|
const size_t bufferSize = 4 * width * height;
|
|
|
|
vks::Buffer imageBuffer;
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&imageBuffer,
|
|
bufferSize));
|
|
imageBuffer.map();
|
|
|
|
// Fill buffer with random colors
|
|
std::random_device rd;
|
|
std::mt19937 rndEngine(rd());
|
|
std::uniform_int_distribution<uint32_t> rndDist(0, 255);
|
|
uint8_t* data = (uint8_t*)imageBuffer.mapped;
|
|
randomPattern(data, width, height);
|
|
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
vks::tools::setImageLayout(copyCmd, texture.image, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, texture.subRange, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
|
|
VkBufferImageCopy region{};
|
|
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
region.imageSubresource.layerCount = 1;
|
|
region.imageSubresource.mipLevel = i;
|
|
region.imageOffset = {};
|
|
region.imageExtent = { width, height, 1 };
|
|
vkCmdCopyBufferToImage(copyCmd, imageBuffer.buffer, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion);
|
|
vks::tools::setImageLayout(copyCmd, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, texture.subRange, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue);
|
|
|
|
imageBuffer.destroy();
|
|
}
|
|
}
|
|
|
|
void VulkanExample::flushRandomPages()
|
|
{
|
|
vkDeviceWaitIdle(device);
|
|
|
|
std::default_random_engine rndEngine(benchmark.active ? 0 : std::random_device{}());
|
|
std::uniform_real_distribution<float> rndDist(0.0f, 1.0f);
|
|
|
|
std::vector<VirtualTexturePage> updatedPages;
|
|
std::vector<VirtualTexturePage> bindingChangedPages;
|
|
for (auto& page : texture.pages)
|
|
{
|
|
if (rndDist(rndEngine) < 0.5f) {
|
|
continue;
|
|
}
|
|
if (page.imageMemoryBind.memory != VK_NULL_HANDLE){
|
|
page.del = true;
|
|
bindingChangedPages.push_back(page);
|
|
}
|
|
}
|
|
|
|
// Update sparse queue binding
|
|
texture.updateSparseBindInfo(bindingChangedPages, true);
|
|
VkFenceCreateInfo fenceInfo = vks::initializers::fenceCreateInfo(VK_FLAGS_NONE);
|
|
VkFence fence;
|
|
VK_CHECK_RESULT(vkCreateFence(device, &fenceInfo, nullptr, &fence));
|
|
vkQueueBindSparse(queue, 1, &texture.bindSparseInfo, fence);
|
|
vkWaitForFences(device, 1, &fence, VK_TRUE, UINT64_MAX);
|
|
vkDestroyFence(device, fence, nullptr);
|
|
for (auto& page : texture.pages)
|
|
{
|
|
if (page.del)
|
|
{
|
|
page.release(device);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay* overlay)
|
|
{
|
|
if (overlay->header("Settings")) {
|
|
if (overlay->sliderFloat("LOD bias", &uniformData.lodBias, -(float)texture.mipLevels, (float)texture.mipLevels)) {
|
|
updateUniformBuffers();
|
|
}
|
|
if (overlay->button("Fill random pages")) {
|
|
fillRandomPages();
|
|
}
|
|
if (overlay->button("Flush random pages")) {
|
|
flushRandomPages();
|
|
}
|
|
if (overlay->button("Fill mip tail")) {
|
|
fillMipTail();
|
|
}
|
|
}
|
|
if (overlay->header("Statistics")) {
|
|
uint32_t respages = 0;
|
|
std::for_each(texture.pages.begin(), texture.pages.end(), [&respages](VirtualTexturePage page) { respages += (page.resident()) ? 1 : 0; });
|
|
overlay->text("Resident pages: %d of %d", respages, static_cast<uint32_t>(texture.pages.size()));
|
|
overlay->text("Mip tail starts at: %d", texture.mipTailStart);
|
|
}
|
|
|
|
}
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|