procedural-3d-engine/multithreading/multithreading.cpp

744 lines
No EOL
24 KiB
C++

/*
* Vulkan Example - Multi threaded command buffer generation and rendering
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#include <thread>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "threadpool.hpp"
#include "frustum.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout used in this example
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
};
class VulkanExample : public VulkanExampleBase
{
public:
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkMeshLoader::MeshBuffer ufo;
vkMeshLoader::MeshBuffer skysphere;
} meshes;
// Shared matrices used for thread push constant blocks
struct {
glm::mat4 projection;
glm::mat4 view;
} matrices;
struct {
VkPipeline phong;
VkPipeline starsphere;
} pipelines;
VkPipelineLayout pipelineLayout;
VkCommandBuffer primaryCommandBuffer;
VkCommandBuffer secondaryCommandBuffer;
// Number of animated objects to be renderer
// by using threads and secondary command buffers
uint32_t numObjectsPerThread;
// Multi threaded stuff
// Max. number of concurrent threads
uint32_t numThreads;
// Use push constants to update shader
// parameters on a per-thread base
struct ThreadPushConstantBlock {
glm::mat4 mvp;
glm::vec3 color;
};
struct ObjectData {
glm::mat4 model;
glm::vec3 pos;
glm::vec3 rotation;
float rotationDir;
float rotationSpeed;
float scale;
float deltaT;
float stateT = 0;
bool visible = true;
};
struct ThreadData {
vkMeshLoader::MeshBuffer mesh;
VkCommandPool commandPool;
// One command buffer per render object
std::vector<VkCommandBuffer> commandBuffer;
// One push constant block per render object
std::vector<ThreadPushConstantBlock> pushConstBlock;
// Per object information (position, rotation, etc.)
std::vector<ObjectData> objectData;
};
std::vector<ThreadData> threadData;
vkTools::ThreadPool threadPool;
// Max. dimension of the ufo mesh for use as the sphere
// radius for frustum culling
float objectSphereDim;
// View frustum for culling invisible objects
vkTools::Frustum frustum;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -32.5f;
zoomSpeed = 2.5f;
rotationSpeed = 0.5f;
rotation = { 0.0f, 37.5f, 0.0f };
title = "Vulkan Example - Multi threaded rendering";
// Get number of max. concurrrent threads
numThreads = std::thread::hardware_concurrency();
assert(numThreads > 0);
#if defined(__ANDROID__)
LOGD("numThreads = %d", numThreads);
#else
std::cout << "numThreads = " << numThreads << std::endl;
#endif
srand(time(NULL));
threadPool.setThreadCount(numThreads);
numObjectsPerThread = 256 / numThreads;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.phong, nullptr);
vkDestroyPipeline(device, pipelines.starsphere, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkFreeCommandBuffers(device, cmdPool, 1, &primaryCommandBuffer);
vkFreeCommandBuffers(device, cmdPool, 1, &secondaryCommandBuffer);
vkMeshLoader::freeMeshBufferResources(device, &meshes.ufo);
vkMeshLoader::freeMeshBufferResources(device, &meshes.skysphere);
for (auto& thread : threadData)
{
vkFreeCommandBuffers(device, thread.commandPool, thread.commandBuffer.size(), thread.commandBuffer.data());
vkDestroyCommandPool(device, thread.commandPool, nullptr);
vkMeshLoader::freeMeshBufferResources(device, &thread.mesh);
}
}
float rnd(float range)
{
return range * (rand() / double(RAND_MAX));
}
// Create all threads and initialize shader push constants
void prepareMultiThreadedRenderer()
{
// todo : separate func
// Since this demo updates the command buffers on each frame
// we don't use the per-framebuffer command buffers from the
// base class, and create a single primary command buffer instead
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
vkTools::checkResult(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &primaryCommandBuffer));
// Create a secondary command buffer for rendering the star sphere
cmdBufAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_SECONDARY;
vkTools::checkResult(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &secondaryCommandBuffer));
threadData.resize(numThreads);
createSetupCommandBuffer();
float maxX = std::floor(std::sqrt(numThreads * numObjectsPerThread));
uint32_t posX = 0;
uint32_t posZ = 0;
for (uint32_t i = 0; i < numThreads; i++)
{
ThreadData *thread = &threadData[i];
// Create one command pool for each thread
VkCommandPoolCreateInfo cmdPoolInfo = vkTools::initializers::commandPoolCreateInfo();
cmdPoolInfo.queueFamilyIndex = swapChain.queueNodeIndex;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
vkTools::checkResult(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &thread->commandPool));
// One secondary command buffer per object that is updated by this thread
thread->commandBuffer.resize(numObjectsPerThread);
// Generate secondary command buffers for each thread
VkCommandBufferAllocateInfo secondaryCmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
thread->commandPool,
VK_COMMAND_BUFFER_LEVEL_SECONDARY,
thread->commandBuffer.size());
vkTools::checkResult(vkAllocateCommandBuffers(device, &secondaryCmdBufAllocateInfo, thread->commandBuffer.data()));
// Unique vertex and index buffers per thread
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
meshes.ufo.vertices.size,
nullptr,
&thread->mesh.vertices.buf,
&thread->mesh.vertices.mem);
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
meshes.ufo.indices.size,
nullptr,
&thread->mesh.indices.buf,
&thread->mesh.indices.mem);
// Copy from mesh buffer
VkBufferCopy copyRegion = {};
// Vertex buffer
copyRegion.size = meshes.ufo.vertices.size;
vkCmdCopyBuffer(
setupCmdBuffer,
meshes.ufo.vertices.buf,
thread->mesh.vertices.buf,
1,
&copyRegion);
// Index buffer
copyRegion.size = meshes.ufo.indices.size;
vkCmdCopyBuffer(
setupCmdBuffer,
meshes.ufo.indices.buf,
thread->mesh.indices.buf,
1,
&copyRegion);
thread->mesh.indexCount = meshes.ufo.indexCount;
thread->pushConstBlock.resize(numObjectsPerThread);
thread->objectData.resize(numObjectsPerThread);
float step = 360.0f / (float)(numThreads * numObjectsPerThread);
for (uint32_t j = 0; j < numObjectsPerThread; j++)
{
float radius = 8.0f + rnd(8.0f) - rnd(4.0f);
thread->objectData[j].pos.x = (posX - maxX / 2.0f) * 3.0f + rnd(1.5f) - rnd(1.5f);
thread->objectData[j].pos.z = (posZ - maxX / 2.0f) * 3.0f + rnd(1.5f) - rnd(1.5f);
posX += 1.0f;
if (posX >= maxX)
{
posX = 0.0f;
posZ += 1.0f;
}
thread->objectData[j].rotation = glm::vec3(0.0f, rnd(360.0f), 0.0f);
thread->objectData[j].deltaT = rnd(1.0f);
thread->objectData[j].rotationDir = (rnd(100.0f) < 50.0f) ? 1.0f : -1.0f;
thread->objectData[j].rotationSpeed = (2.0f + rnd(4.0f)) * thread->objectData[j].rotationDir;
thread->objectData[j].scale = 0.75f + rnd(0.5f);
thread->pushConstBlock[j].color = glm::vec3(rnd(1.0f), rnd(1.0f), rnd(1.0f));
}
}
// Submit buffer copies to the queue
flushSetupCommandBuffer();
// todo : fence?
}
// Builds the secondary command buffer for each thread
void threadRenderCode(uint32_t threadIndex, uint32_t cmdBufferIndex, VkCommandBufferInheritanceInfo inheritanceInfo)
{
ThreadData *thread = &threadData[threadIndex];
ObjectData *objectData = &thread->objectData[cmdBufferIndex];
// Check visibility against view frustum
objectData->visible = frustum.checkSphere(objectData->pos, objectSphereDim * 0.5f);
if (!objectData->visible)
{
return;
}
VkCommandBufferBeginInfo commandBufferBeginInfo = vkTools::initializers::commandBufferBeginInfo();
commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
commandBufferBeginInfo.pInheritanceInfo = &inheritanceInfo;
VkCommandBuffer cmdBuffer = thread->commandBuffer[cmdBufferIndex];
vkTools::checkResult(vkBeginCommandBuffer(cmdBuffer, &commandBufferBeginInfo));
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(cmdBuffer, 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(cmdBuffer, 0, 1, &scissor);
vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.phong);
// Update
objectData->rotation.y += 2.5f * objectData->rotationSpeed * frameTimer;
if (objectData->rotation.y > 360.0f)
{
objectData->rotation.y -= 360.0f;
}
objectData->deltaT += 0.15f * frameTimer;
if (objectData->deltaT > 1.0f)
objectData->deltaT -= 1.0f;
objectData->pos.y = sin(glm::radians(objectData->deltaT * 360.0f)) * 2.5f;
objectData->model = glm::translate(glm::mat4(), objectData->pos);
objectData->model = glm::rotate(objectData->model, -sinf(glm::radians(objectData->deltaT * 360.0f)) * 0.25f, glm::vec3(objectData->rotationDir, 0.0f, 0.0f));
objectData->model = glm::rotate(objectData->model, glm::radians(objectData->rotation.y), glm::vec3(0.0f, objectData->rotationDir, 0.0f));
objectData->model = glm::rotate(objectData->model, glm::radians(objectData->deltaT * 360.0f), glm::vec3(0.0f, objectData->rotationDir, 0.0f));
objectData->model = glm::scale(objectData->model, glm::vec3(objectData->scale));
thread->pushConstBlock[cmdBufferIndex].mvp = matrices.projection * matrices.view * objectData->model;
// Update shader push constant block
// Contains model view matrix
vkCmdPushConstants(
cmdBuffer,
pipelineLayout,
VK_SHADER_STAGE_VERTEX_BIT,
0,
sizeof(ThreadPushConstantBlock),
&thread->pushConstBlock[cmdBufferIndex]);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(cmdBuffer, 0, 1, &thread->mesh.vertices.buf, offsets);
vkCmdBindIndexBuffer(cmdBuffer, thread->mesh.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(cmdBuffer, thread->mesh.indexCount, 1, 0, 0, 0);
vkTools::checkResult(vkEndCommandBuffer(cmdBuffer));
}
void updateSecondaryCommandBuffer(VkCommandBufferInheritanceInfo inheritanceInfo)
{
// Secondary command buffer for the sky sphere
VkCommandBufferBeginInfo commandBufferBeginInfo = vkTools::initializers::commandBufferBeginInfo();
commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
commandBufferBeginInfo.pInheritanceInfo = &inheritanceInfo;
vkTools::checkResult(vkBeginCommandBuffer(secondaryCommandBuffer, &commandBufferBeginInfo));
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(secondaryCommandBuffer, 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(secondaryCommandBuffer, 0, 1, &scissor);
vkCmdBindPipeline(secondaryCommandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.starsphere);
glm::mat4 view = glm::mat4();
view = glm::rotate(view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
view = glm::rotate(view, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
view = glm::rotate(view, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
glm::mat4 mvp = matrices.projection * view;
vkCmdPushConstants(
secondaryCommandBuffer,
pipelineLayout,
VK_SHADER_STAGE_VERTEX_BIT,
0,
sizeof(mvp),
&mvp);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(secondaryCommandBuffer, 0, 1, &meshes.skysphere.vertices.buf, offsets);
vkCmdBindIndexBuffer(secondaryCommandBuffer, meshes.skysphere.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(secondaryCommandBuffer, meshes.skysphere.indexCount, 1, 0, 0, 0);
vkTools::checkResult(vkEndCommandBuffer(secondaryCommandBuffer));
}
// Updates the secondary command buffers using a thread pool
// and puts them into the primary command buffer that's
// lat submitted to the queue for rendering
void updateCommandBuffers(VkFramebuffer frameBuffer)
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[0].color = { {0.0f, 0.0f, 0.2f, 0.0f} };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
renderPassBeginInfo.framebuffer = frameBuffer;
// Set target frame buffer
vkTools::checkResult(vkBeginCommandBuffer(primaryCommandBuffer, &cmdBufInfo));
// The primary command buffer does not contain any rendering commands
// These are stored (and retrieved) from the secondary command buffers
vkCmdBeginRenderPass(primaryCommandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS);
// Inheritance info for the secondary command buffers
VkCommandBufferInheritanceInfo inheritanceInfo = vkTools::initializers::commandBufferInheritanceInfo();
inheritanceInfo.renderPass = renderPass;
// Secondary command buffer also use the currently active framebuffer
inheritanceInfo.framebuffer = frameBuffer;
// Contains the list of secondary command buffers to be executed
std::vector<VkCommandBuffer> commandBuffers;
// Secondary command buffer with star background sphere
updateSecondaryCommandBuffer(inheritanceInfo);
commandBuffers.push_back(secondaryCommandBuffer);
for (uint32_t t = 0; t < numThreads; t++)
{
// Add a job to the thread's queue for each object to be rendered
for (uint32_t i = 0; i < numObjectsPerThread; i++)
{
threadPool.threads[t]->addJob([=] { threadRenderCode(t, i, inheritanceInfo); });
// Only submit if object is within the current view frustum
if (threadData[t].objectData[i].visible)
{
commandBuffers.push_back(threadData[t].commandBuffer[i]);
}
}
}
threadPool.wait();
// Execute render commands from the secondary command buffer
vkCmdExecuteCommands(primaryCommandBuffer, commandBuffers.size(), commandBuffers.data());
vkCmdEndRenderPass(primaryCommandBuffer);
vkTools::checkResult(vkEndCommandBuffer(primaryCommandBuffer));
}
void draw()
{
// Get next image in the swap chain (back/front buffer)
vkTools::checkResult(swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer));
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
updateCommandBuffers(frameBuffers[currentBuffer]);
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &primaryCommandBuffer;
// Setup a wait fence
// todo : reuse
VkFence renderFence = {};
VkFenceCreateInfo fenceCreateInfo = vkTools::initializers::fenceCreateInfo(VK_FLAGS_NONE);
vkCreateFence(device, &fenceCreateInfo, NULL, &renderFence);
vkTools::checkResult(vkQueueSubmit(queue, 1, &submitInfo, renderFence));
// Wait for fence to signal that all command buffers are ready
VkResult fenceRes;
do
{
fenceRes = vkWaitForFences(device, 1, &renderFence, VK_TRUE, 100000000);
} while (fenceRes == VK_TIMEOUT);
vkTools::checkResult(fenceRes);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
vkTools::checkResult(swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete));
vkDestroyFence(device, renderFence, nullptr);
vkTools::checkResult(vkQueueWaitIdle(queue));
}
void loadMeshes()
{
loadMesh(getAssetPath() + "models/retroufo_red_lowpoly.dae", &meshes.ufo, vertexLayout, 0.12f);
loadMesh(getAssetPath() + "models/sphere.obj", &meshes.skysphere, vertexLayout, 1.0f);
objectSphereDim = std::max(std::max(meshes.ufo.dim.x, meshes.ufo.dim.y), meshes.ufo.dim.z);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(3);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 3 : Color
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 6);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupPipelineLayout()
{
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(nullptr, 0);
// Push constants for model matrices
VkPushConstantRange pushConstantRange =
vkTools::initializers::pushConstantRange(
VK_SHADER_STAGE_VERTEX_BIT,
sizeof(ThreadPushConstantBlock),
0);
// Push constant ranges are part of the pipeline layout
pPipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pPipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
vkTools::checkResult(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Solid rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/multithreading/phong.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/multithreading/phong.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
vkTools::checkResult(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.phong));
// Star sphere rendering pipeline
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
depthStencilState.depthWriteEnable = VK_FALSE;
shaderStages[0] = loadShader(getAssetPath() + "shaders/multithreading/starsphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/multithreading/starsphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
vkTools::checkResult(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.starsphere));
}
void updateMatrices()
{
matrices.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
matrices.view = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
matrices.view = glm::rotate(matrices.view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
matrices.view = glm::rotate(matrices.view, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
matrices.view = glm::rotate(matrices.view, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
frustum.update(matrices.projection * matrices.view);
}
void prepare()
{
VulkanExampleBase::prepare();
loadMeshes();
setupVertexDescriptions();
setupPipelineLayout();
preparePipelines();
prepareMultiThreadedRenderer();
updateMatrices();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
}
virtual void viewChanged()
{
updateMatrices();
}
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
vulkanExample = new VulkanExample();
#if defined(_WIN32)
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
vulkanExample->renderLoop();
delete(vulkanExample);
#if !defined(__ANDROID__)
return 0;
#endif
}