procedural-3d-engine/pipelines/pipelines.cpp
2016-03-06 01:20:03 -05:00

663 lines
21 KiB
C++

/*
* Vulkan Example - Using different pipelines in one single renderpass
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <gli/gli.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
//#define USE_GLSL
#define ENABLE_VALIDATION false
// Vertex layout for this example
struct Vertex {
float pos[3];
float col[3];
float uv[2];
float normal[3];
};
class VulkanExample: public VulkanExampleBase
{
private:
vkTools::VulkanTexture textureColorMap;
public:
struct {
int count;
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkMeshLoader::MeshBuffer cube;
} meshes;
vkTools::UniformData uniformDataVS;
// Same uniform buffer layout as shader
struct {
glm::mat4 projectionMatrix;
glm::mat4 modelMatrix;
glm::mat4 viewMatrix;
} uboVS;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
struct {
VkPipeline solidColor;
VkPipeline wireFrame;
VkPipeline texture;
} pipelines;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -5.0f;
rotation = glm::vec3(-32.5f, 45.0f, 0.0f);
title = "Vulkan Example - Using pipelines";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.solidColor, nullptr);
vkDestroyPipeline(device, pipelines.wireFrame, nullptr);
vkDestroyPipeline(device, pipelines.texture, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkMeshLoader::freeMeshBufferResources(device, &meshes.cube);
vkDestroyBuffer(device, uniformDataVS.buffer, nullptr);
vkFreeMemory(device, uniformDataVS.memory, nullptr);
textureLoader->destroyTexture(textureColorMap);
}
void loadTextures()
{
textureLoader->loadTexture(
"./../data/textures/crate_bc3.ktx",
VK_FORMAT_BC3_UNORM_BLOCK,
&textureColorMap);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.cube.vertices.buf, offsets);
vkCmdSetLineWidth(drawCmdBuffers[i], 2.0f);
// Left : Solid colored
viewport.width = (float)width / 3.0;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solidColor);
vkCmdDraw(drawCmdBuffers[i], vertices.count, 1, 0, 0);
// Center : Textured
viewport.x = (float)width / 3.0;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.texture);
vkCmdSetLineWidth(drawCmdBuffers[i], 2.0f);
vkCmdDraw(drawCmdBuffers[i], vertices.count, 1, 0, 0);
// Right : Wireframe
viewport.x = (float)width / 3.0 + (float)width / 3.0;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.wireFrame);
vkCmdDraw(drawCmdBuffers[i], vertices.count, 1, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VkImageMemoryBarrier prePresentBarrier = vkTools::prePresentBarrier(swapChain.buffers[i].image);
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &prePresentBarrier);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
VkSemaphore presentCompleteSemaphore;
VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo();
err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, nullptr, &presentCompleteSemaphore);
assert(!err);
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(presentCompleteSemaphore, &currentBuffer);
assert(!err);
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &presentCompleteSemaphore;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit draw command buffer
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
err = swapChain.queuePresent(queue, currentBuffer);
assert(!err);
vkDestroySemaphore(device, presentCompleteSemaphore, nullptr);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
err = vkQueueWaitIdle(queue);
assert(!err);
}
// Create vertices and buffers for uv mapped cube
void generateCube()
{
// Setup vertices
#define colred { 1.0f, 0.0f, 0.0f }
#define colgreen { 0.0f, 1.0f, 0.0f }
#define colblue { 0.0f, 0.0f, 1.0f }
#define d 1.0f
std::vector<Vertex> vertexBuffer = {
// -Y
{ { d,-d, d }, colred,{ 1.0, 1.0 }, { 0.0f, 1.0f, 0.0f } },
{ { -d,-d,-d }, colred,{ 0.0, 0.0 },{ 0.0f, 1.0f, 0.0f } },
{ { d,-d,-d }, colred,{ 1.0, 0.0 },{ 0.0f, 1.0f, 0.0f } },
{ { d,-d, d }, colred,{ 1.0, 1.0 },{ 0.0f, 1.0f, 0.0f } },
{ { -d,-d, d }, colred,{ 0.0, 1.0 },{ 0.0f, 1.0f, 0.0f } },
{ { -d,-d,-d }, colred,{ 0.0, 0.0 },{ 0.0f, 1.0f, 0.0f } },
// +Y
{ { d, d, d }, colred,{ 1.0, 1.0 },{ 0.0f, -1.0f, 0.0f } },
{ { d, d,-d }, colred,{ 1.0, 0.0 },{ 0.0f, -1.0f, 0.0f } },
{ { -d, d,-d }, colred,{ 0.0, 0.0 },{ 0.0f, -1.0f, 0.0f } },
{ { d, d, d }, colred,{ 1.0, 1.0 },{ 0.0f, -1.0f, 0.0f } },
{ { -d, d,-d }, colred,{ 0.0, 0.0 },{ 0.0f, -1.0f, 0.0f } },
{ { -d, d, d }, colred,{ 0.0, 1.0 },{ 0.0f, -1.0f, 0.0f } },
// -X
{ { -d,-d,-d }, colblue,{ 0.0, 0.0 },{ -1.0f, 0.0f, 0.0f } },
{ { -d,-d, d }, colblue,{ 0.0, 1.0 },{ -1.0f, 0.0f, 0.0f } },
{ { -d, d, d }, colblue,{ 1.0, 1.0 },{ -1.0f, 0.0f, 0.0f } },
{ { -d,-d,-d }, colblue,{ 0.0, 0.0 },{ -1.0f, 0.0f, 0.0f } },
{ { -d, d, d }, colblue,{ 1.0, 1.0 },{ -1.0f, 0.0f, 0.0f } },
{ { -d, d,-d }, colblue,{ 1.0, 0.0 },{ -1.0f, 0.0f, 0.0f } },
// +X
{ { d, d, d }, colblue,{ 1.0, 1.0 },{ 1.0f, 0.0f, 0.0f } },
{ { d,-d,-d }, colblue,{ 0.0, 0.0 },{ 1.0f, 0.0f, 0.0f } },
{ { d, d,-d }, colblue,{ 1.0, 0.0 },{ 1.0f, 0.0f, 0.0f } },
{ { d,-d,-d }, colblue,{ 0.0, 0.0 },{ 1.0f, 0.0f, 0.0f } },
{ { d, d, d }, colblue,{ 1.0, 1.0 },{ 1.0f, 0.0f, 0.0f } },
{ { d,-d, d }, colblue,{ 0.0, 1.0 },{ 1.0f, 0.0f, 0.0f } },
// -Z
{ { d, d,-d }, colgreen,{ 1.0, 1.0 },{ 0.0f, 0.0f, -1.0f } },
{ { -d,-d,-d }, colgreen,{ 0.0, 0.0 },{ 0.0f, 0.0f, -1.0f } },
{ { -d, d,-d }, colgreen,{ 0.0, 1.0 },{ 0.0f, 0.0f, -1.0f } },
{ { d, d,-d }, colgreen,{ 1.0, 1.0 },{ 0.0f, 0.0f, -1.0f } },
{ { d,-d,-d }, colgreen,{ 1.0, 0.0 },{ 0.0f, 0.0f, -1.0f } },
{ { -d,-d,-d }, colgreen,{ 0.0, 0.0 },{ 0.0f, 0.0f, -1.0f } },
// +Z
{ { -d, d, d }, colgreen,{ 0.0, 1.0 },{ 0.0f, 0.0f, 1.0f } },
{ { -d,-d, d }, colgreen,{ 0.0, 0.0 },{ 0.0f, 0.0f, 1.0f } },
{ { d,-d, d }, colgreen,{ 1.0, 0.0 },{ 0.0f, 0.0f, 1.0f } },
{ { d, d, d }, colgreen,{ 1.0, 1.0 },{ 0.0f, 0.0f, 1.0f } },
{ { -d, d, d }, colgreen,{ 0.0, 1.0 },{ 0.0f, 0.0f, 1.0f } },
{ { d,-d, d }, colgreen,{ 1.0, 0.0 },{ 0.0f, 0.0f, 1.0f } }
};
#undef d
vertices.count = vertexBuffer.size();
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
vertexBuffer.size() * sizeof(Vertex),
vertexBuffer.data(),
&meshes.cube.vertices.buf,
&meshes.cube.vertices.mem);
}
void prepareVertices()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Color
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 3 : Texture coordinates
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6);
// Location 2 : Normal
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one combined image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
// Color map image descriptor
VkDescriptorImageInfo texDescriptorColorMap =
vkTools::initializers::descriptorImageInfo(
textureColorMap.sampler,
textureColorMap.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformDataVS.descriptor),
// Binding 1 : Fragment shader image sampler
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorColorMap)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_FRONT_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Color pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
#ifdef USE_GLSL
shaderStages[0] = loadShaderGLSL("./../data/shaders/pipelines/base.vert", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShaderGLSL("./../data/shaders/pipelines/color.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[0] = loadShader("./../data/shaders/pipelines/base.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/pipelines/color.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
// Textured pipeline
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solidColor);
assert(!err);
// Reuse most of the initial pipeline for the next pipelines and only change affected parameters
// Cull back faces
rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
// Pipeline for textured rendering
// Use different fragment shader
#ifdef USE_GLSL
shaderStages[1] = loadShaderGLSL("./../data/shaders/pipelines/texture.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[1] = loadShader("./../data/shaders/pipelines/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.texture);
assert(!err);
// Pipeline for wire frame rendering
// Solid polygon fill
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
// Use different fragment shader
#ifdef USE_GLSL
shaderStages[1] = loadShaderGLSL("./../data/shaders/pipelines/wireframe.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[1] = loadShader("./../data/shaders/pipelines/wireframe.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wireFrame);
assert(!err);
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
VkResult err;
// Vertex shader uniform buffer block
VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkBufferCreateInfo bufferInfo = vkTools::initializers::bufferCreateInfo(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVS));
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataVS.buffer);
assert(!err);
vkGetBufferMemoryRequirements(device, uniformDataVS.buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &allocInfo, nullptr, &uniformDataVS.memory);
assert(!err);
err = vkBindBufferMemory(device, uniformDataVS.buffer, uniformDataVS.memory, 0);
assert(!err);
uniformDataVS.descriptor.buffer = uniformDataVS.buffer;
uniformDataVS.descriptor.offset = 0;
uniformDataVS.descriptor.range = sizeof(uboVS);
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVS.projectionMatrix = glm::perspective(deg_to_rad(60.0f), (float)(width / 3.0f) / (float)height, 0.1f, 256.0f);
uboVS.viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
uboVS.modelMatrix = glm::mat4();
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformDataVS.memory);
assert(!err);
}
void prepare()
{
VulkanExampleBase::prepare();
loadTextures();
prepareVertices();
prepareUniformBuffers();
setupDescriptorSetLayout();
generateCube();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
}
virtual void viewChanged()
{
updateUniformBuffers();
}
};
VulkanExample *vulkanExample;
#ifdef _WIN32
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#else
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
#ifdef _WIN32
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#else
int main(const int argc, const char *argv[])
#endif
{
vulkanExample = new VulkanExample();
#ifdef _WIN32
vulkanExample->setupWindow(hInstance, WndProc);
#else
vulkanExample->setupWindow();
#endif
vulkanExample->initSwapchain();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}