procedural-3d-engine/examples/triangle/triangle.cpp

1182 lines
56 KiB
C++
Raw Normal View History

2016-02-16 15:07:25 +01:00
/*
* Vulkan Example - Basic indexed triangle rendering
*
* Note:
* This is a "pedal to the metal" example to show off how to get Vulkan up and displaying something
2016-02-16 15:07:25 +01:00
* Contrary to the other examples, this one won't make use of helper functions or initializers
* Except in a few cases (swap chain setup e.g.)
*
2024-10-11 16:36:47 +02:00
* Copyright (C) 2016-2024 by Sascha Willems - www.saschawillems.de
2016-02-16 15:07:25 +01:00
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <fstream>
2016-02-16 15:07:25 +01:00
#include <vector>
#include <exception>
2016-02-16 15:07:25 +01:00
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
2016-02-16 15:07:25 +01:00
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
// We want to keep GPU and CPU busy. To do that we may start building a new command buffer while the previous one is still being executed
// This number defines how many frames may be worked on simultaneously at once
2023-12-26 18:49:39 +01:00
// Increasing this number may improve performance but will also introduce additional latency
#define MAX_CONCURRENT_FRAMES 2
2016-02-16 15:07:25 +01:00
class VulkanExample : public VulkanExampleBase
{
public:
// Vertex layout used in this example
struct Vertex {
float position[3];
float color[3];
};
// Vertex buffer and attributes
2016-02-16 15:07:25 +01:00
struct {
2023-12-26 18:49:39 +01:00
VkDeviceMemory memory{ VK_NULL_HANDLE }; // Handle to the device memory for this buffer
2024-11-23 16:01:23 +01:00
VkBuffer buffer{ VK_NULL_HANDLE }; // Handle to the Vulkan buffer object that the memory is bound to
2016-02-16 15:07:25 +01:00
} vertices;
// Index buffer
2020-02-07 18:28:20 +01:00
struct {
2023-12-26 18:49:39 +01:00
VkDeviceMemory memory{ VK_NULL_HANDLE };
2024-11-23 16:01:23 +01:00
VkBuffer buffer{ VK_NULL_HANDLE };
2023-12-26 18:49:39 +01:00
uint32_t count{ 0 };
2016-02-16 15:07:25 +01:00
} indices;
2016-12-24 12:43:37 +01:00
// Uniform buffer block object
struct UniformBuffer {
2024-11-23 16:01:23 +01:00
VkDeviceMemory memory{ VK_NULL_HANDLE };
VkBuffer buffer{ VK_NULL_HANDLE };
// The descriptor set stores the resources bound to the binding points in a shader
// It connects the binding points of the different shaders with the buffers and images used for those bindings
2024-11-23 16:01:23 +01:00
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
// We keep a pointer to the mapped buffer, so we can easily update it's contents via a memcpy
uint8_t* mapped{ nullptr };
};
// We use one UBO per frame, so we can have a frame overlap and make sure that uniforms aren't updated while still in use
std::array<UniformBuffer, MAX_CONCURRENT_FRAMES> uniformBuffers;
2016-02-16 15:07:25 +01:00
// For simplicity we use the same uniform block layout as in the shader:
//
// layout(set = 0, binding = 0) uniform UBO
// {
// mat4 projectionMatrix;
// mat4 modelMatrix;
// mat4 viewMatrix;
// } ubo;
//
// This way we can just memcopy the ubo data to the ubo
// Note: You should use data types that align with the GPU in order to avoid manual padding (vec4, mat4)
struct ShaderData {
2016-02-16 15:07:25 +01:00
glm::mat4 projectionMatrix;
glm::mat4 modelMatrix;
glm::mat4 viewMatrix;
};
2016-02-16 15:07:25 +01:00
2020-08-08 18:13:29 +02:00
// The pipeline layout is used by a pipeline to access the descriptor sets
// It defines interface (without binding any actual data) between the shader stages used by the pipeline and the shader resources
// A pipeline layout can be shared among multiple pipelines as long as their interfaces match
2023-12-26 18:49:39 +01:00
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
// Pipelines (often called "pipeline state objects") are used to bake all states that affect a pipeline
// While in OpenGL every state can be changed at (almost) any time, Vulkan requires to layout the graphics (and compute) pipeline states upfront
// So for each combination of non-dynamic pipeline states you need a new pipeline (there are a few exceptions to this not discussed here)
// Even though this adds a new dimension of planning ahead, it's a great opportunity for performance optimizations by the driver
2023-12-26 18:49:39 +01:00
VkPipeline pipeline{ VK_NULL_HANDLE };
// The descriptor set layout describes the shader binding layout (without actually referencing descriptor)
// Like the pipeline layout it's pretty much a blueprint and can be used with different descriptor sets as long as their layout matches
2023-12-26 18:49:39 +01:00
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
// Synchronization primitives
// Synchronization is an important concept of Vulkan that OpenGL mostly hid away. Getting this right is crucial to using Vulkan.
// Semaphores are used to coordinate operations within the graphics queue and ensure correct command ordering
2023-12-26 18:49:39 +01:00
std::array<VkSemaphore, MAX_CONCURRENT_FRAMES> presentCompleteSemaphores{};
std::array<VkSemaphore, MAX_CONCURRENT_FRAMES> renderCompleteSemaphores{};
2023-12-26 18:49:39 +01:00
VkCommandPool commandPool{ VK_NULL_HANDLE };
std::array<VkCommandBuffer, MAX_CONCURRENT_FRAMES> commandBuffers{};
std::array<VkFence, MAX_CONCURRENT_FRAMES> waitFences{};
2023-12-26 18:49:39 +01:00
// To select the correct sync objects, we need to keep track of the current frame
uint32_t currentFrame{ 0 };
VulkanExample() : VulkanExampleBase()
2016-02-16 15:07:25 +01:00
{
title = "Vulkan Example - Basic indexed triangle";
// To keep things simple, we don't use the UI overlay from the framework
settings.overlay = false;
// Setup a default look-at camera
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f));
camera.setRotation(glm::vec3(0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f);
2016-02-16 15:07:25 +01:00
// Values not set here are initialized in the base class constructor
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note: Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipeline, nullptr);
2016-02-16 15:07:25 +01:00
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyBuffer(device, vertices.buffer, nullptr);
vkFreeMemory(device, vertices.memory, nullptr);
2016-02-16 15:07:25 +01:00
vkDestroyBuffer(device, indices.buffer, nullptr);
vkFreeMemory(device, indices.memory, nullptr);
2023-11-02 07:48:45 +01:00
vkDestroyCommandPool(device, commandPool, nullptr);
2023-12-26 18:49:39 +01:00
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
vkDestroyFence(device, waitFences[i], nullptr);
vkDestroySemaphore(device, presentCompleteSemaphores[i], nullptr);
vkDestroySemaphore(device, renderCompleteSemaphores[i], nullptr);
vkDestroyBuffer(device, uniformBuffers[i].buffer, nullptr);
vkFreeMemory(device, uniformBuffers[i].memory, nullptr);
}
2016-02-16 15:07:25 +01:00
}
2020-08-08 18:13:29 +02:00
// This function is used to request a device memory type that supports all the property flags we request (e.g. device local, host visible)
// Upon success it will return the index of the memory type that fits our requested memory properties
// This is necessary as implementations can offer an arbitrary number of memory types with different
// memory properties.
// You can check https://vulkan.gpuinfo.org/ for details on different memory configurations
uint32_t getMemoryTypeIndex(uint32_t typeBits, VkMemoryPropertyFlags properties)
{
// Iterate over all memory types available for the device used in this example
for (uint32_t i = 0; i < deviceMemoryProperties.memoryTypeCount; i++)
{
if ((typeBits & 1) == 1)
{
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
2020-02-07 18:28:20 +01:00
{
return i;
}
}
typeBits >>= 1;
}
throw "Could not find a suitable memory type!";
}
2024-10-11 16:36:47 +02:00
// Create the per-frame (in flight) Vulkan synchronization primitives used in this example
void createSynchronizationPrimitives()
{
2023-12-26 18:49:39 +01:00
// Semaphores are used for correct command ordering within a queue
VkSemaphoreCreateInfo semaphoreCI{};
semaphoreCI.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
// Fences are used to check draw command buffer completion on the host
VkFenceCreateInfo fenceCI{};
fenceCI.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
// Create the fences in signaled state (so we don't wait on first render of each command buffer)
fenceCI.flags = VK_FENCE_CREATE_SIGNALED_BIT;
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
// Semaphore used to ensure that image presentation is complete before starting to submit again
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCI, nullptr, &presentCompleteSemaphores[i]));
// Semaphore used to ensure that all commands submitted have been finished before submitting the image to the queue
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCI, nullptr, &renderCompleteSemaphores[i]));
2023-12-26 18:49:39 +01:00
// Fence used to ensure that command buffer has completed exection before using it again
VK_CHECK_RESULT(vkCreateFence(device, &fenceCI, nullptr, &waitFences[i]));
}
}
void createCommandBuffers()
2016-02-16 15:07:25 +01:00
{
// All command buffers are allocated from a command pool
VkCommandPoolCreateInfo commandPoolCI{};
commandPoolCI.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
commandPoolCI.queueFamilyIndex = swapChain.queueNodeIndex;
commandPoolCI.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VK_CHECK_RESULT(vkCreateCommandPool(device, &commandPoolCI, nullptr, &commandPool));
// Allocate one command buffer per max. concurrent frame from above pool
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, MAX_CONCURRENT_FRAMES);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, commandBuffers.data()));
2016-02-16 15:07:25 +01:00
}
// Prepare vertex and index buffers for an indexed triangle
// Also uploads them to device local memory using staging and initializes vertex input and attribute binding to match the vertex shader
void createVertexBuffer()
2016-02-16 15:07:25 +01:00
{
// A note on memory management in Vulkan in general:
2020-08-09 13:16:35 +02:00
// This is a very complex topic and while it's fine for an example application to small individual memory allocations that is not
// what should be done a real-world application, where you should allocate large chunks of memory at once instead.
2016-02-16 15:07:25 +01:00
// Setup vertices
2023-07-17 20:32:27 +02:00
std::vector<Vertex> vertexBuffer{
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 0.0f, 0.0f } },
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f, 0.0f } },
{ { 0.0f, -1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } }
2016-02-16 15:07:25 +01:00
};
uint32_t vertexBufferSize = static_cast<uint32_t>(vertexBuffer.size()) * sizeof(Vertex);
2016-02-16 15:07:25 +01:00
// Setup indices
2023-07-17 20:32:27 +02:00
std::vector<uint32_t> indexBuffer{ 0, 1, 2 };
indices.count = static_cast<uint32_t>(indexBuffer.size());
uint32_t indexBufferSize = indices.count * sizeof(uint32_t);
2016-02-16 15:07:25 +01:00
2023-07-17 20:32:27 +02:00
VkMemoryAllocateInfo memAlloc{};
2016-02-16 15:07:25 +01:00
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs;
// Static data like vertex and index buffer should be stored on the device memory for optimal (and fastest) access by the GPU
//
// To achieve this we use so-called "staging buffers" :
// - Create a buffer that's visible to the host (and can be mapped)
// - Copy the data to this buffer
// - Create another buffer that's local on the device (VRAM) with the same size
// - Copy the data from the host to the device using a command buffer
// - Delete the host visible (staging) buffer
// - Use the device local buffers for rendering
//
// Note: On unified memory architectures where host (CPU) and GPU share the same memory, staging is not necessary
// To keep this sample easy to follow, there is no check for that in place
struct StagingBuffer {
VkDeviceMemory memory;
VkBuffer buffer;
};
2016-02-16 15:07:25 +01:00
struct {
StagingBuffer vertices;
StagingBuffer indices;
2024-11-02 12:44:10 +01:00
} stagingBuffers{};
void* data;
// Vertex buffer
VkBufferCreateInfo vertexBufferInfoCI{};
vertexBufferInfoCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vertexBufferInfoCI.size = vertexBufferSize;
// Buffer is used as the copy source
vertexBufferInfoCI.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
// Create a host-visible buffer to copy the vertex data to (staging buffer)
VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfoCI, nullptr, &stagingBuffers.vertices.buffer));
vkGetBufferMemoryRequirements(device, stagingBuffers.vertices.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
2024-10-11 16:36:47 +02:00
// Request a host visible memory type that can be used to copy our data to
// Also request it to be coherent, so that writes are visible to the GPU right after unmapping the buffer
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.vertices.memory));
// Map and copy
VK_CHECK_RESULT(vkMapMemory(device, stagingBuffers.vertices.memory, 0, memAlloc.allocationSize, 0, &data));
memcpy(data, vertexBuffer.data(), vertexBufferSize);
vkUnmapMemory(device, stagingBuffers.vertices.memory);
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffers.vertices.buffer, stagingBuffers.vertices.memory, 0));
// Create a device local buffer to which the (host local) vertex data will be copied and which will be used for rendering
vertexBufferInfoCI.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfoCI, nullptr, &vertices.buffer));
vkGetBufferMemoryRequirements(device, vertices.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &vertices.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, vertices.buffer, vertices.memory, 0));
// Index buffer
VkBufferCreateInfo indexbufferCI{};
indexbufferCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
indexbufferCI.size = indexBufferSize;
indexbufferCI.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
// Copy index data to a buffer visible to the host (staging buffer)
VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferCI, nullptr, &stagingBuffers.indices.buffer));
vkGetBufferMemoryRequirements(device, stagingBuffers.indices.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.indices.memory));
VK_CHECK_RESULT(vkMapMemory(device, stagingBuffers.indices.memory, 0, indexBufferSize, 0, &data));
memcpy(data, indexBuffer.data(), indexBufferSize);
vkUnmapMemory(device, stagingBuffers.indices.memory);
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffers.indices.buffer, stagingBuffers.indices.memory, 0));
// Create destination buffer with device only visibility
indexbufferCI.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferCI, nullptr, &indices.buffer));
vkGetBufferMemoryRequirements(device, indices.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &indices.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, indices.buffer, indices.memory, 0));
// Buffer copies have to be submitted to a queue, so we need a command buffer for them
// Note: Some devices offer a dedicated transfer queue (with only the transfer bit set) that may be faster when doing lots of copies
VkCommandBuffer copyCmd;
2023-07-17 20:32:27 +02:00
VkCommandBufferAllocateInfo cmdBufAllocateInfo{};
cmdBufAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmdBufAllocateInfo.commandPool = commandPool;
cmdBufAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmdBufAllocateInfo.commandBufferCount = 1;
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &copyCmd));
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(copyCmd, &cmdBufInfo));
// Put buffer region copies into command buffer
2023-07-17 20:32:27 +02:00
VkBufferCopy copyRegion{};
// Vertex buffer
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffers.vertices.buffer, vertices.buffer, 1, &copyRegion);
// Index buffer
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffers.indices.buffer, indices.buffer, 1, &copyRegion);
VK_CHECK_RESULT(vkEndCommandBuffer(copyCmd));
// Submit the command buffer to the queue to finish the copy
2023-07-17 20:32:27 +02:00
VkSubmitInfo submitInfo{};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &copyCmd;
// Create fence to ensure that the command buffer has finished executing
VkFenceCreateInfo fenceCI{};
fenceCI.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceCI.flags = 0;
VkFence fence;
VK_CHECK_RESULT(vkCreateFence(device, &fenceCI, nullptr, &fence));
// Submit to the queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, fence));
// Wait for the fence to signal that command buffer has finished executing
VK_CHECK_RESULT(vkWaitForFences(device, 1, &fence, VK_TRUE, DEFAULT_FENCE_TIMEOUT));
vkDestroyFence(device, fence, nullptr);
vkFreeCommandBuffers(device, commandPool, 1, &copyCmd);
// Destroy staging buffers
// Note: Staging buffer must not be deleted before the copies have been submitted and executed
vkDestroyBuffer(device, stagingBuffers.vertices.buffer, nullptr);
vkFreeMemory(device, stagingBuffers.vertices.memory, nullptr);
vkDestroyBuffer(device, stagingBuffers.indices.buffer, nullptr);
vkFreeMemory(device, stagingBuffers.indices.memory, nullptr);
2016-02-16 15:07:25 +01:00
}
// Descriptors are allocated from a pool, that tells the implementation how many and what types of descriptors we are going to use (at maximum)
void createDescriptorPool()
2016-02-16 15:07:25 +01:00
{
// We need to tell the API the number of max. requested descriptors per type
2024-11-02 12:44:10 +01:00
VkDescriptorPoolSize descriptorTypeCounts[1]{};
// This example only one descriptor type (uniform buffer)
descriptorTypeCounts[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
// We have one buffer (and as such descriptor) per frame
descriptorTypeCounts[0].descriptorCount = MAX_CONCURRENT_FRAMES;
2016-02-16 15:07:25 +01:00
// For additional types you need to add new entries in the type count list
// E.g. for two combined image samplers :
// typeCounts[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
// typeCounts[1].descriptorCount = 2;
// Create the global descriptor pool
// All descriptors used in this example are allocated from this pool
VkDescriptorPoolCreateInfo descriptorPoolCI{};
descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolCI.pNext = nullptr;
descriptorPoolCI.poolSizeCount = 1;
descriptorPoolCI.pPoolSizes = descriptorTypeCounts;
// Set the max. number of descriptor sets that can be requested from this pool (requesting beyond this limit will result in an error)
// Our sample will create one set per uniform buffer per frame
descriptorPoolCI.maxSets = MAX_CONCURRENT_FRAMES;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool));
2016-02-16 15:07:25 +01:00
}
// Descriptor set layouts define the interface between our application and the shader
// Basically connects the different shader stages to descriptors for binding uniform buffers, image samplers, etc.
// So every shader binding should map to one descriptor set layout binding
void createDescriptorSetLayout()
2016-02-16 15:07:25 +01:00
{
// Binding 0: Uniform buffer (Vertex shader)
VkDescriptorSetLayoutBinding layoutBinding{};
2016-02-16 15:07:25 +01:00
layoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
layoutBinding.descriptorCount = 1;
layoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
layoutBinding.pImmutableSamplers = nullptr;
2016-02-16 15:07:25 +01:00
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{};
descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayoutCI.pNext = nullptr;
descriptorLayoutCI.bindingCount = 1;
descriptorLayoutCI.pBindings = &layoutBinding;
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout));
2016-02-16 15:07:25 +01:00
}
// Shaders access data using descriptor sets that "point" at our uniform buffers
// The descriptor sets make use of the descriptor set layouts created above
void createDescriptorSets()
2016-02-16 15:07:25 +01:00
{
// Allocate one descriptor set per frame from the global descriptor pool
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
2023-07-17 20:32:27 +02:00
VkDescriptorSetAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = descriptorPool;
allocInfo.descriptorSetCount = 1;
allocInfo.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &uniformBuffers[i].descriptorSet));
// Update the descriptor set determining the shader binding points
// For every binding point used in a shader there needs to be one
// descriptor set matching that binding point
2023-07-17 20:32:27 +02:00
VkWriteDescriptorSet writeDescriptorSet{};
// The buffer's information is passed using a descriptor info structure
VkDescriptorBufferInfo bufferInfo{};
bufferInfo.buffer = uniformBuffers[i].buffer;
bufferInfo.range = sizeof(ShaderData);
// Binding 0 : Uniform buffer
writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSet.dstSet = uniformBuffers[i].descriptorSet;
writeDescriptorSet.descriptorCount = 1;
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeDescriptorSet.pBufferInfo = &bufferInfo;
writeDescriptorSet.dstBinding = 0;
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
2016-02-16 15:07:25 +01:00
}
// Create the depth (and stencil) buffer attachments used by our framebuffers
// Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare
void setupDepthStencil()
{
// Create an optimal image used as the depth stencil attachment
VkImageCreateInfo imageCI{};
imageCI.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCI.imageType = VK_IMAGE_TYPE_2D;
imageCI.format = depthFormat;
// Use example's height and width
imageCI.extent = { width, height, 1 };
imageCI.mipLevels = 1;
imageCI.arrayLayers = 1;
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCI.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
imageCI.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &depthStencil.image));
// Allocate memory for the image (device local) and bind it to our image
VkMemoryAllocateInfo memAlloc{};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
2024-03-19 21:51:27 +01:00
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &depthStencil.memory));
VK_CHECK_RESULT(vkBindImageMemory(device, depthStencil.image, depthStencil.memory, 0));
// Create a view for the depth stencil image
// Images aren't directly accessed in Vulkan, but rather through views described by a subresource range
// This allows for multiple views of one image with differing ranges (e.g. for different layers)
VkImageViewCreateInfo depthStencilViewCI{};
depthStencilViewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
depthStencilViewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilViewCI.format = depthFormat;
depthStencilViewCI.subresourceRange = {};
depthStencilViewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
// Stencil aspect should only be set on depth + stencil formats (VK_FORMAT_D16_UNORM_S8_UINT..VK_FORMAT_D32_SFLOAT_S8_UINT)
if (depthFormat >= VK_FORMAT_D16_UNORM_S8_UINT) {
depthStencilViewCI.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
depthStencilViewCI.subresourceRange.baseMipLevel = 0;
depthStencilViewCI.subresourceRange.levelCount = 1;
depthStencilViewCI.subresourceRange.baseArrayLayer = 0;
depthStencilViewCI.subresourceRange.layerCount = 1;
depthStencilViewCI.image = depthStencil.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilViewCI, nullptr, &depthStencil.view));
}
// Create a frame buffer for each swap chain image
// Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare
void setupFrameBuffer()
{
// Create a frame buffer for every image in the swapchain
frameBuffers.resize(swapChain.images.size());
for (size_t i = 0; i < frameBuffers.size(); i++)
{
2024-11-02 12:44:10 +01:00
std::array<VkImageView, 2> attachments{};
// Color attachment is the view of the swapchain image
attachments[0] = swapChain.imageViews[i];
// Depth/Stencil attachment is the same for all frame buffers due to how depth works with current GPUs
attachments[1] = depthStencil.view;
VkFramebufferCreateInfo frameBufferCI{};
frameBufferCI.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
// All frame buffers use the same renderpass setup
frameBufferCI.renderPass = renderPass;
frameBufferCI.attachmentCount = static_cast<uint32_t>(attachments.size());
frameBufferCI.pAttachments = attachments.data();
frameBufferCI.width = width;
frameBufferCI.height = height;
frameBufferCI.layers = 1;
// Create the framebuffer
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCI, nullptr, &frameBuffers[i]));
}
}
// Render pass setup
// Render passes are a new concept in Vulkan. They describe the attachments used during rendering and may contain multiple subpasses with attachment dependencies
// This allows the driver to know up-front what the rendering will look like and is a good opportunity to optimize especially on tile-based renderers (with multiple subpasses)
// Using sub pass dependencies also adds implicit layout transitions for the attachment used, so we don't need to add explicit image memory barriers to transform them
// Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare
void setupRenderPass()
{
// This example will use a single render pass with one subpass
// Descriptors for the attachments used by this renderpass
2023-07-17 20:32:27 +02:00
std::array<VkAttachmentDescription, 2> attachments{};
// Color attachment
2020-02-07 18:28:20 +01:00
attachments[0].format = swapChain.colorFormat; // Use the color format selected by the swapchain
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT; // We don't use multi sampling in this example
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear this attachment at the start of the render pass
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; // Keep its contents after the render pass is finished (for displaying it)
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; // We don't use stencil, so don't care for load
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // Same for store
attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // Layout at render pass start. Initial doesn't matter, so we use undefined
attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; // Layout to which the attachment is transitioned when the render pass is finished
// As we want to present the color buffer to the swapchain, we transition to PRESENT_KHR
// Depth attachment
2020-02-07 18:28:20 +01:00
attachments[1].format = depthFormat; // A proper depth format is selected in the example base
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear depth at start of first subpass
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // We don't need depth after render pass has finished (DONT_CARE may result in better performance)
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; // No stencil
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // No Stencil
attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // Layout at render pass start. Initial doesn't matter, so we use undefined
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Transition to depth/stencil attachment
// Setup attachment references
2023-07-17 20:32:27 +02:00
VkAttachmentReference colorReference{};
2020-02-07 18:28:20 +01:00
colorReference.attachment = 0; // Attachment 0 is color
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // Attachment layout used as color during the subpass
2023-07-17 20:32:27 +02:00
VkAttachmentReference depthReference{};
2020-02-07 18:28:20 +01:00
depthReference.attachment = 1; // Attachment 1 is color
2020-08-09 13:16:35 +02:00
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Attachment used as depth/stencil used during the subpass
// Setup a single subpass reference
2023-07-17 20:32:27 +02:00
VkSubpassDescription subpassDescription{};
2020-02-07 18:28:20 +01:00
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1; // Subpass uses one color attachment
subpassDescription.pColorAttachments = &colorReference; // Reference to the color attachment in slot 0
subpassDescription.pDepthStencilAttachment = &depthReference; // Reference to the depth attachment in slot 1
subpassDescription.inputAttachmentCount = 0; // Input attachments can be used to sample from contents of a previous subpass
subpassDescription.pInputAttachments = nullptr; // (Input attachments not used by this example)
subpassDescription.preserveAttachmentCount = 0; // Preserved attachments can be used to loop (and preserve) attachments through subpasses
subpassDescription.pPreserveAttachments = nullptr; // (Preserve attachments not used by this example)
subpassDescription.pResolveAttachments = nullptr; // Resolve attachments are resolved at the end of a sub pass and can be used for e.g. multi sampling
// Setup subpass dependencies
// These will add the implicit attachment layout transitions specified by the attachment descriptions
2020-02-07 18:28:20 +01:00
// The actual usage layout is preserved through the layout specified in the attachment reference
// Each subpass dependency will introduce a memory and execution dependency between the source and dest subpass described by
// srcStageMask, dstStageMask, srcAccessMask, dstAccessMask (and dependencyFlags is set)
// Note: VK_SUBPASS_EXTERNAL is a special constant that refers to all commands executed outside of the actual renderpass)
2024-11-02 12:44:10 +01:00
std::array<VkSubpassDependency, 2> dependencies{};
// Does the transition from final to initial layout for the depth an color attachments
// Depth attachment
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
dependencies[0].dependencyFlags = 0;
// Color attachment
dependencies[1].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].dstSubpass = 0;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].srcAccessMask = 0;
dependencies[1].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
dependencies[1].dependencyFlags = 0;
// Create the actual renderpass
VkRenderPassCreateInfo renderPassCI{};
renderPassCI.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassCI.attachmentCount = static_cast<uint32_t>(attachments.size()); // Number of attachments used by this render pass
renderPassCI.pAttachments = attachments.data(); // Descriptions of the attachments used by the render pass
renderPassCI.subpassCount = 1; // We only use one subpass in this example
renderPassCI.pSubpasses = &subpassDescription; // Description of that subpass
renderPassCI.dependencyCount = static_cast<uint32_t>(dependencies.size()); // Number of subpass dependencies
renderPassCI.pDependencies = dependencies.data(); // Subpass dependencies used by the render pass
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderPass));
}
2020-01-12 12:54:41 +01:00
// Vulkan loads its shaders from an immediate binary representation called SPIR-V
// Shaders are compiled offline from e.g. GLSL using the reference glslang compiler
// This function loads such a shader from a binary file and returns a shader module structure
VkShaderModule loadSPIRVShader(std::string filename)
{
size_t shaderSize;
char* shaderCode{ nullptr };
#if defined(__ANDROID__)
// Load shader from compressed asset
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
assert(asset);
2017-01-23 13:30:28 +01:00
shaderSize = AAsset_getLength(asset);
assert(shaderSize > 0);
2017-01-23 13:30:28 +01:00
shaderCode = new char[shaderSize];
AAsset_read(asset, shaderCode, shaderSize);
AAsset_close(asset);
#else
std::ifstream is(filename, std::ios::binary | std::ios::in | std::ios::ate);
if (is.is_open())
{
shaderSize = is.tellg();
is.seekg(0, std::ios::beg);
// Copy file contents into a buffer
shaderCode = new char[shaderSize];
is.read(shaderCode, shaderSize);
is.close();
assert(shaderSize > 0);
}
#endif
if (shaderCode)
{
// Create a new shader module that will be used for pipeline creation
VkShaderModuleCreateInfo shaderModuleCI{};
shaderModuleCI.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
shaderModuleCI.codeSize = shaderSize;
shaderModuleCI.pCode = (uint32_t*)shaderCode;
VkShaderModule shaderModule;
VK_CHECK_RESULT(vkCreateShaderModule(device, &shaderModuleCI, nullptr, &shaderModule));
delete[] shaderCode;
return shaderModule;
}
else
{
std::cerr << "Error: Could not open shader file \"" << filename << "\"" << std::endl;
return VK_NULL_HANDLE;
}
}
void createPipelines()
2016-02-16 15:07:25 +01:00
{
2024-10-11 16:36:47 +02:00
// Create the pipeline layout that is used to generate the rendering pipelines that are based on this descriptor set layout
// In a more complex scenario you would have different pipeline layouts for different descriptor set layouts that could be reused
VkPipelineLayoutCreateInfo pipelineLayoutCI{};
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutCI.pNext = nullptr;
pipelineLayoutCI.setLayoutCount = 1;
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
// Create the graphics pipeline used in this example
// Vulkan uses the concept of rendering pipelines to encapsulate fixed states, replacing OpenGL's complex state machine
// A pipeline is then stored and hashed on the GPU making pipeline changes very fast
// Note: There are still a few dynamic states that are not directly part of the pipeline (but the info that they are used is)
2016-02-16 15:07:25 +01:00
VkGraphicsPipelineCreateInfo pipelineCI{};
pipelineCI.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
// The layout used for this pipeline (can be shared among multiple pipelines using the same layout)
pipelineCI.layout = pipelineLayout;
2016-02-16 15:07:25 +01:00
// Renderpass this pipeline is attached to
pipelineCI.renderPass = renderPass;
2016-02-16 15:07:25 +01:00
2020-08-09 13:16:35 +02:00
// Construct the different states making up the pipeline
// Input assembly state describes how primitives are assembled
// This pipeline will assemble vertex data as a triangle lists (though we only use one triangle)
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI{};
inputAssemblyStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssemblyStateCI.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
2016-02-16 15:07:25 +01:00
// Rasterization state
VkPipelineRasterizationStateCreateInfo rasterizationStateCI{};
rasterizationStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_FILL;
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
rasterizationStateCI.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterizationStateCI.depthClampEnable = VK_FALSE;
rasterizationStateCI.rasterizerDiscardEnable = VK_FALSE;
rasterizationStateCI.depthBiasEnable = VK_FALSE;
rasterizationStateCI.lineWidth = 1.0f;
2016-02-16 15:07:25 +01:00
// Color blend state describes how blend factors are calculated (if used)
2020-02-07 18:28:20 +01:00
// We need one blend attachment state per color attachment (even if blending is not used)
2023-07-17 20:32:27 +02:00
VkPipelineColorBlendAttachmentState blendAttachmentState{};
blendAttachmentState.colorWriteMask = 0xf;
blendAttachmentState.blendEnable = VK_FALSE;
VkPipelineColorBlendStateCreateInfo colorBlendStateCI{};
colorBlendStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlendStateCI.attachmentCount = 1;
2023-07-17 20:32:27 +02:00
colorBlendStateCI.pAttachments = &blendAttachmentState;
2016-02-16 15:07:25 +01:00
// Viewport state sets the number of viewports and scissor used in this pipeline
2020-08-09 13:16:35 +02:00
// Note: This is actually overridden by the dynamic states (see below)
VkPipelineViewportStateCreateInfo viewportStateCI{};
viewportStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportStateCI.viewportCount = 1;
viewportStateCI.scissorCount = 1;
2016-02-16 15:07:25 +01:00
// Enable dynamic states
// Most states are baked into the pipeline, but there are still a few dynamic states that can be changed within a command buffer
// To be able to change these we need do specify which dynamic states will be changed using this pipeline. Their actual states are set later on in the command buffer.
// For this example we will set the viewport and scissor using dynamic states
2016-02-16 15:07:25 +01:00
std::vector<VkDynamicState> dynamicStateEnables;
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
VkPipelineDynamicStateCreateInfo dynamicStateCI{};
dynamicStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicStateCI.pDynamicStates = dynamicStateEnables.data();
dynamicStateCI.dynamicStateCount = static_cast<uint32_t>(dynamicStateEnables.size());
2016-02-16 15:07:25 +01:00
// Depth and stencil state containing depth and stencil compare and test operations
// We only use depth tests and want depth tests and writes to be enabled and compare with less or equal
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI{};
depthStencilStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencilStateCI.depthTestEnable = VK_TRUE;
depthStencilStateCI.depthWriteEnable = VK_TRUE;
depthStencilStateCI.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
depthStencilStateCI.depthBoundsTestEnable = VK_FALSE;
depthStencilStateCI.back.failOp = VK_STENCIL_OP_KEEP;
depthStencilStateCI.back.passOp = VK_STENCIL_OP_KEEP;
depthStencilStateCI.back.compareOp = VK_COMPARE_OP_ALWAYS;
depthStencilStateCI.stencilTestEnable = VK_FALSE;
depthStencilStateCI.front = depthStencilStateCI.back;
2016-02-16 15:07:25 +01:00
// Multi sampling state
2020-08-09 13:16:35 +02:00
// This example does not make use of multi sampling (for anti-aliasing), the state must still be set and passed to the pipeline
VkPipelineMultisampleStateCreateInfo multisampleStateCI{};
multisampleStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampleStateCI.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
multisampleStateCI.pSampleMask = nullptr;
2016-02-16 15:07:25 +01:00
// Vertex input descriptions
// Specifies the vertex input parameters for a pipeline
// Vertex input binding
// This example uses a single vertex input binding at binding point 0 (see vkCmdBindVertexBuffers)
VkVertexInputBindingDescription vertexInputBinding{};
vertexInputBinding.binding = 0;
vertexInputBinding.stride = sizeof(Vertex);
vertexInputBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
2020-08-09 13:16:35 +02:00
// Input attribute bindings describe shader attribute locations and memory layouts
2024-10-11 16:36:47 +02:00
std::array<VkVertexInputAttributeDescription, 2> vertexInputAttributs{};
// These match the following shader layout (see triangle.vert):
// layout (location = 0) in vec3 inPos;
// layout (location = 1) in vec3 inColor;
// Attribute location 0: Position
vertexInputAttributs[0].binding = 0;
vertexInputAttributs[0].location = 0;
// Position attribute is three 32 bit signed (SFLOAT) floats (R32 G32 B32)
vertexInputAttributs[0].format = VK_FORMAT_R32G32B32_SFLOAT;
vertexInputAttributs[0].offset = offsetof(Vertex, position);
// Attribute location 1: Color
vertexInputAttributs[1].binding = 0;
vertexInputAttributs[1].location = 1;
// Color attribute is three 32 bit signed (SFLOAT) floats (R32 G32 B32)
vertexInputAttributs[1].format = VK_FORMAT_R32G32B32_SFLOAT;
vertexInputAttributs[1].offset = offsetof(Vertex, color);
// Vertex input state used for pipeline creation
VkPipelineVertexInputStateCreateInfo vertexInputStateCI{};
vertexInputStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputStateCI.vertexBindingDescriptionCount = 1;
vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputStateCI.vertexAttributeDescriptionCount = 2;
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributs.data();
// Shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages{};
// Vertex shader
shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
// Set pipeline stage for this shader
shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
// Load binary SPIR-V shader
shaderStages[0].module = loadSPIRVShader(getShadersPath() + "triangle/triangle.vert.spv");
// Main entry point for the shader
shaderStages[0].pName = "main";
assert(shaderStages[0].module != VK_NULL_HANDLE);
// Fragment shader
shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
// Set pipeline stage for this shader
shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
// Load binary SPIR-V shader
shaderStages[1].module = loadSPIRVShader(getShadersPath() + "triangle/triangle.frag.spv");
// Main entry point for the shader
shaderStages[1].pName = "main";
assert(shaderStages[1].module != VK_NULL_HANDLE);
// Set pipeline shader stage info
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
// Assign the pipeline states to the pipeline creation info structure
pipelineCI.pVertexInputState = &vertexInputStateCI;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
2016-02-16 15:07:25 +01:00
// Create rendering pipeline using the specified states
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
// Shader modules are no longer needed once the graphics pipeline has been created
vkDestroyShaderModule(device, shaderStages[0].module, nullptr);
vkDestroyShaderModule(device, shaderStages[1].module, nullptr);
2016-02-16 15:07:25 +01:00
}
void createUniformBuffers()
2016-02-16 15:07:25 +01:00
{
// Prepare and initialize the per-frame uniform buffer blocks containing shader uniforms
2024-10-11 16:36:47 +02:00
// Single uniforms like in OpenGL are no longer present in Vulkan. All hader uniforms are passed via uniform buffer blocks
2016-02-16 15:07:25 +01:00
VkMemoryRequirements memReqs;
// Vertex shader uniform buffer block
2023-07-17 20:32:27 +02:00
VkBufferCreateInfo bufferInfo{};
VkMemoryAllocateInfo allocInfo{};
2016-02-16 15:07:25 +01:00
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.pNext = nullptr;
2016-02-16 15:07:25 +01:00
allocInfo.allocationSize = 0;
allocInfo.memoryTypeIndex = 0;
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = sizeof(ShaderData);
// This buffer will be used as a uniform buffer
2016-02-16 15:07:25 +01:00
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
// Create the buffers
for (uint32_t i = 0; i < MAX_CONCURRENT_FRAMES; i++) {
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferInfo, nullptr, &uniformBuffers[i].buffer));
// Get memory requirements including size, alignment and memory type
vkGetBufferMemoryRequirements(device, uniformBuffers[i].buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
// Get the memory type index that supports host visible memory access
// Most implementations offer multiple memory types and selecting the correct one to allocate memory from is crucial
// We also want the buffer to be host coherent so we don't have to flush (or sync after every update.
// Note: This may affect performance so you might not want to do this in a real world application that updates buffers on a regular base
allocInfo.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
// Allocate memory for the uniform buffer
VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &(uniformBuffers[i].memory)));
// Bind memory to buffer
VK_CHECK_RESULT(vkBindBufferMemory(device, uniformBuffers[i].buffer, uniformBuffers[i].memory, 0));
// We map the buffer once, so we can update it without having to map it again
VK_CHECK_RESULT(vkMapMemory(device, uniformBuffers[i].memory, 0, sizeof(ShaderData), 0, (void**)&uniformBuffers[i].mapped));
}
2016-02-16 15:07:25 +01:00
}
void prepare()
{
VulkanExampleBase::prepare();
createSynchronizationPrimitives();
createCommandBuffers();
createVertexBuffer();
createUniformBuffers();
createDescriptorSetLayout();
createDescriptorPool();
createDescriptorSets();
createPipelines();
2016-02-16 15:07:25 +01:00
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
// Use a fence to wait until the command buffer has finished execution before using it again
vkWaitForFences(device, 1, &waitFences[currentFrame], VK_TRUE, UINT64_MAX);
2023-12-26 18:49:39 +01:00
VK_CHECK_RESULT(vkResetFences(device, 1, &waitFences[currentFrame]));
// Get the next swap chain image from the implementation
2023-12-26 18:49:39 +01:00
// Note that the implementation is free to return the images in any order, so we must use the acquire function and can't just cycle through the images/imageIndex on our own
uint32_t imageIndex;
VkResult result = vkAcquireNextImageKHR(device, swapChain.swapChain, UINT64_MAX, presentCompleteSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
windowResize();
return;
2023-12-26 18:49:39 +01:00
}
else if ((result != VK_SUCCESS) && (result != VK_SUBOPTIMAL_KHR)) {
throw "Could not acquire the next swap chain image!";
}
// Update the uniform buffer for the next frame
ShaderData shaderData{};
shaderData.projectionMatrix = camera.matrices.perspective;
shaderData.viewMatrix = camera.matrices.view;
shaderData.modelMatrix = glm::mat4(1.0f);
// Copy the current matrices to the current frame's uniform buffer
// Note: Since we requested a host coherent memory type for the uniform buffer, the write is instantly visible to the GPU
2023-12-26 18:49:39 +01:00
memcpy(uniformBuffers[currentFrame].mapped, &shaderData, sizeof(ShaderData));
// Build the command buffer
// Unlike in OpenGL all rendering commands are recorded into command buffers that are then submitted to the queue
// This allows to generate work upfront in a separate thread
// For basic command buffers (like in this sample), recording is so fast that there is no need to offload this
2023-12-26 18:49:39 +01:00
vkResetCommandBuffer(commandBuffers[currentFrame], 0);
2023-07-17 20:32:27 +02:00
VkCommandBufferBeginInfo cmdBufInfo{};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
// Set clear values for all framebuffer attachments with loadOp set to clear
// We use two attachments (color and depth) that are cleared at the start of the subpass and as such we need to set clear values for both
2024-11-02 12:44:10 +01:00
VkClearValue clearValues[2]{};
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
2023-07-17 20:32:27 +02:00
VkRenderPassBeginInfo renderPassBeginInfo{};
renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassBeginInfo.pNext = nullptr;
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
renderPassBeginInfo.framebuffer = frameBuffers[imageIndex];
2023-12-26 18:49:39 +01:00
const VkCommandBuffer commandBuffer = commandBuffers[currentFrame];
VK_CHECK_RESULT(vkBeginCommandBuffer(commandBuffer, &cmdBufInfo));
// Start the first sub pass specified in our default render pass setup by the base class
// This will clear the color and depth attachment
2023-12-26 18:49:39 +01:00
vkCmdBeginRenderPass(commandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
// Update dynamic viewport state
2023-07-17 20:32:27 +02:00
VkViewport viewport{};
viewport.height = (float)height;
viewport.width = (float)width;
viewport.minDepth = (float)0.0f;
viewport.maxDepth = (float)1.0f;
2023-12-26 18:49:39 +01:00
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
// Update dynamic scissor state
2023-07-17 20:32:27 +02:00
VkRect2D scissor{};
scissor.extent.width = width;
scissor.extent.height = height;
scissor.offset.x = 0;
scissor.offset.y = 0;
2023-12-26 18:49:39 +01:00
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
2024-10-10 17:26:25 +02:00
// Bind descriptor set for the current frame's uniform buffer, so the shader uses the data from that buffer for this draw
2023-12-26 18:49:39 +01:00
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &uniformBuffers[currentFrame].descriptorSet, 0, nullptr);
// Bind the rendering pipeline
// The pipeline (state object) contains all states of the rendering pipeline, binding it will set all the states specified at pipeline creation time
2023-12-26 18:49:39 +01:00
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
// Bind triangle vertex buffer (contains position and colors)
2023-07-17 20:32:27 +02:00
VkDeviceSize offsets[1]{ 0 };
2023-12-26 18:49:39 +01:00
vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertices.buffer, offsets);
// Bind triangle index buffer
2023-12-26 18:49:39 +01:00
vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32);
// Draw indexed triangle
2024-10-10 17:26:25 +02:00
vkCmdDrawIndexed(commandBuffer, indices.count, 1, 0, 0, 0);
2023-12-26 18:49:39 +01:00
vkCmdEndRenderPass(commandBuffer);
// Ending the render pass will add an implicit barrier transitioning the frame buffer color attachment to
// VK_IMAGE_LAYOUT_PRESENT_SRC_KHR for presenting it to the windowing system
2023-12-26 18:49:39 +01:00
VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffer));
// Submit the command buffer to the graphics queue
// Pipeline stage at which the queue submission will wait (via pWaitSemaphores)
VkPipelineStageFlags waitStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
// The submit info structure specifies a command buffer queue submission batch
2023-07-17 20:32:27 +02:00
VkSubmitInfo submitInfo{};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
2023-12-26 18:49:39 +01:00
submitInfo.pWaitDstStageMask = &waitStageMask; // Pointer to the list of pipeline stages that the semaphore waits will occur at
submitInfo.pCommandBuffers = &commandBuffer; // Command buffers(s) to execute in this batch (submission)
submitInfo.commandBufferCount = 1; // We submit a single command buffer
// Semaphore to wait upon before the submitted command buffer starts executing
submitInfo.pWaitSemaphores = &presentCompleteSemaphores[currentFrame];
2023-12-26 18:49:39 +01:00
submitInfo.waitSemaphoreCount = 1;
// Semaphore to be signaled when command buffers have completed
submitInfo.pSignalSemaphores = &renderCompleteSemaphores[currentFrame];
2023-12-26 18:49:39 +01:00
submitInfo.signalSemaphoreCount = 1;
// Submit to the graphics queue passing a wait fence
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, waitFences[currentFrame]));
// Present the current frame buffer to the swap chain
// Pass the semaphore signaled by the command buffer submission from the submit info as the wait semaphore for swap chain presentation
// This ensures that the image is not presented to the windowing system until all commands have been submitted
VkPresentInfoKHR presentInfo{};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = &renderCompleteSemaphores[currentFrame];
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = &swapChain.swapChain;
presentInfo.pImageIndices = &imageIndex;
result = vkQueuePresentKHR(queue, &presentInfo);
if ((result == VK_ERROR_OUT_OF_DATE_KHR) || (result == VK_SUBOPTIMAL_KHR)) {
windowResize();
}
else if (result != VK_SUCCESS) {
throw "Could not present the image to the swap chain!";
}
2023-12-26 18:49:39 +01:00
// Select the next frame to render to, based on the max. no. of concurrent frames
currentFrame = (currentFrame + 1) % MAX_CONCURRENT_FRAMES;
2016-02-16 15:07:25 +01:00
}
};
2023-07-17 20:32:27 +02:00
// OS specific main entry points
2020-08-09 13:16:35 +02:00
// Most of the code base is shared for the different supported operating systems, but stuff like message handling differs
2016-02-16 15:07:25 +01:00
#if defined(_WIN32)
// Windows entry point
VulkanExample *vulkanExample;
2016-02-16 15:07:25 +01:00
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
2016-02-16 15:07:25 +01:00
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
2024-11-02 12:44:10 +01:00
int APIENTRY WinMain(_In_ HINSTANCE hInstance, _In_opt_ HINSTANCE hPrevInstance, _In_ LPSTR, _In_ int)
2016-02-16 15:07:25 +01:00
{
for (size_t i = 0; i < __argc; i++) { VulkanExample::args.push_back(__argv[i]); };
vulkanExample = new VulkanExample();
vulkanExample->initVulkan();
vulkanExample->setupWindow(hInstance, WndProc);
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
2016-02-16 15:07:25 +01:00
}
#elif defined(__ANDROID__)
// Android entry point
VulkanExample *vulkanExample;
void android_main(android_app* state)
2016-02-16 15:07:25 +01:00
{
vulkanExample = new VulkanExample();
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
2017-01-23 13:30:28 +01:00
androidApp = state;
vulkanExample->renderLoop();
delete(vulkanExample);
}
#elif defined(_DIRECT2DISPLAY)
// Linux entry point with direct to display wsi
// Direct to Displays (D2D) is used on embedded platforms
VulkanExample *vulkanExample;
static void handleEvent()
{
}
int main(const int argc, const char *argv[])
{
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
vulkanExample = new VulkanExample();
2016-12-14 08:34:45 +01:00
vulkanExample->initVulkan();
2016-02-16 15:07:25 +01:00
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}
2020-09-13 10:12:33 +02:00
#elif defined(VK_USE_PLATFORM_DIRECTFB_EXT)
VulkanExample *vulkanExample;
static void handleEvent(const DFBWindowEvent *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
int main(const int argc, const char *argv[])
{
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
vulkanExample = new VulkanExample();
vulkanExample->initVulkan();
vulkanExample->setupWindow();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}
2017-02-02 08:54:56 +00:00
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
VulkanExample *vulkanExample;
int main(const int argc, const char *argv[])
{
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
vulkanExample = new VulkanExample();
vulkanExample->initVulkan();
vulkanExample->setupWindow();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}
#elif defined(__linux__) || defined(__FreeBSD__)
// Linux entry point
VulkanExample *vulkanExample;
#if defined(VK_USE_PLATFORM_XCB_KHR)
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#else
static void handleEvent()
{
}
#endif
int main(const int argc, const char *argv[])
{
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
vulkanExample = new VulkanExample();
vulkanExample->initVulkan();
vulkanExample->setupWindow();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}
macOS/iOS fixes plus other generic fixes for clang and validation warnings (#1117) * Fix clang Objective-C++ flags for macOS command line builds * Fix getAssetPath() and getShaderBasePath() for macOS command line builds * Protect debugUtilsMessageCallback() from failing when pMessageIdName is NULL * Fix a few clang function override and mismatched type warnings * Fix validation layer warnings on exit for computeraytracing example * Fix regression in text visibility toggle for textOverlay example * Support VK_USE_PLATFORM_METAL_EXT vs. deprecated VK_USE_PLATFORM_MACOS_MVK / DVK_USE_PLATFORM_IOS_MVK * Check dynamic state features before enabling capabilities in dynamicstate example * Fix vkCmdDraw() vertexCount argument (PARTICLE_COUNT) in particlesystem example * Update examples list and restore benchmarking script (to top level) * Fix validation warning in descriptorindexing example * Fix device max recursion depth validation warnings in ray tracing examples * Fix OpenMP build settings for texture3d example on all platforms * Update and simplify build instructions for macOS * Update CI script with correct library path for libomp on macOS x86_64 * Update CI scipt to install libomp prior to macOS builds * Trying one more time to get the CI script working for macOS libomp * Fix vertexCount argument using calculated size in particlesystem example * Fix combined image descriptor offset calculation in descriptorbuffer example * macOS: Support non-system level Vulkan SDK installs, with fallback to MoltenVK library
2024-05-04 07:53:08 -04:00
#elif (defined(VK_USE_PLATFORM_MACOS_MVK) || defined(VK_USE_PLATFORM_METAL_EXT)) && defined(VK_EXAMPLE_XCODE_GENERATED)
VulkanExample *vulkanExample;
int main(const int argc, const char *argv[])
{
@autoreleasepool
{
for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); };
vulkanExample = new VulkanExample();
vulkanExample->initVulkan();
vulkanExample->setupWindow(nullptr);
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
}
return 0;
}
2023-09-01 11:12:08 -04:00
#elif defined(VK_USE_PLATFORM_SCREEN_QNX)
VULKAN_EXAMPLE_MAIN()
2017-02-02 08:54:56 +00:00
#endif