procedural-3d-engine/texture/texture.cpp

923 lines
32 KiB
C++
Raw Normal View History

2016-02-16 15:07:25 +01:00
/*
* Vulkan Example - Texture loading (and display) example (including mip maps)
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
2016-02-16 15:07:25 +01:00
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
2017-02-09 22:04:15 +01:00
#include <gli/gli.hpp>
2016-02-16 15:07:25 +01:00
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanDevice.hpp"
#include "VulkanBuffer.hpp"
2016-02-16 15:07:25 +01:00
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout for this example
struct Vertex {
float pos[3];
float uv[2];
float normal[3];
2016-02-16 15:07:25 +01:00
};
class VulkanExample : public VulkanExampleBase
{
public:
// Contains all Vulkan objects that are required to store and use a texture
// Note that this repository contains a texture class (VulkanTexture.hpp) that encapsulates texture loading functionality in a class that is used in subsequent demos
2016-02-16 15:07:25 +01:00
struct Texture {
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
} texture;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount;
2016-02-16 15:07:25 +01:00
vks::Buffer uniformBufferVS;
2016-02-16 15:07:25 +01:00
struct {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 viewPos;
2016-02-16 15:07:25 +01:00
float lodBias = 0.0f;
} uboVS;
struct {
VkPipeline solid;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -2.5f;
rotation = { 0.0f, 15.0f, 0.0f };
title = "Vulkan Example - Texture loading";
enableTextOverlay = true;
2016-02-16 15:07:25 +01:00
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
destroyTextureImage(texture);
2016-02-16 15:07:25 +01:00
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBufferVS.destroy();
2016-02-16 15:07:25 +01:00
}
// Create an image memory barrier for changing the layout of
// an image and put it into an active command buffer
void setImageLayout(VkCommandBuffer cmdBuffer, VkImage image, VkImageAspectFlags aspectMask, VkImageLayout oldImageLayout, VkImageLayout newImageLayout, VkImageSubresourceRange subresourceRange)
2016-02-16 15:07:25 +01:00
{
// Create an image barrier object
VkImageMemoryBarrier imageMemoryBarrier = vks::initializers::imageMemoryBarrier();;
2016-02-16 15:07:25 +01:00
imageMemoryBarrier.oldLayout = oldImageLayout;
imageMemoryBarrier.newLayout = newImageLayout;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
2016-02-16 15:07:25 +01:00
// Only sets masks for layouts used in this example
// For a more complete version that can be used with other layouts see vks::tools::setImageLayout
2016-02-16 15:07:25 +01:00
// Source layouts (old)
switch (oldImageLayout)
{
case VK_IMAGE_LAYOUT_UNDEFINED:
// Only valid as initial layout, memory contents are not preserved
// Can be accessed directly, no source dependency required
imageMemoryBarrier.srcAccessMask = 0;
break;
case VK_IMAGE_LAYOUT_PREINITIALIZED:
// Only valid as initial layout for linear images, preserves memory contents
// Make sure host writes to the image have been finished
imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
// Old layout is transfer destination
// Make sure any writes to the image have been finished
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
}
2016-02-16 15:07:25 +01:00
// Target layouts (new)
switch (newImageLayout)
2016-02-16 15:07:25 +01:00
{
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
// Transfer source (copy, blit)
// Make sure any reads from the image have been finished
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
// Transfer destination (copy, blit)
// Make sure any writes to the image have been finished
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
// Shader read (sampler, input attachment)
2016-02-16 15:07:25 +01:00
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
break;
2016-02-16 15:07:25 +01:00
}
// Put barrier on top of pipeline
2016-02-16 15:07:25 +01:00
VkPipelineStageFlags srcStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
VkPipelineStageFlags destStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
// Put barrier inside setup command buffer
vkCmdPipelineBarrier(
cmdBuffer,
2016-02-16 15:07:25 +01:00
srcStageFlags,
destStageFlags,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
void loadTexture(std::string fileName, VkFormat format, bool forceLinearTiling)
2016-02-16 15:07:25 +01:00
{
#if defined(__ANDROID__)
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, fileName.c_str(), AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
void *textureData = malloc(size);
AAsset_read(asset, textureData, size);
AAsset_close(asset);
gli::texture2d tex2D(gli::load((const char*)textureData, size));
#else
gli::texture2d tex2D(gli::load(fileName));
#endif
2016-02-16 15:07:25 +01:00
assert(!tex2D.empty());
VkFormatProperties formatProperties;
texture.width = static_cast<uint32_t>(tex2D[0].extent().x);
texture.height = static_cast<uint32_t>(tex2D[0].extent().y);
texture.mipLevels = static_cast<uint32_t>(tex2D.levels());
2016-02-16 15:07:25 +01:00
// Get device properites for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Only use linear tiling if requested (and supported by the device)
// Support for linear tiling is mostly limited, so prefer to use
// optimal tiling instead
// On most implementations linear tiling will only support a very
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
VkBool32 useStaging = true;
// Only use linear tiling if forced
if (forceLinearTiling)
{
// Don't use linear if format is not supported for (linear) shader sampling
useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
}
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs = {};
2016-02-16 15:07:25 +01:00
if (useStaging)
{
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = tex2D.size();
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, tex2D.data(), tex2D.size());
vkUnmapMemory(device, stagingMemory);
// Setup buffer copy regions for each mip level
std::vector<VkBufferImageCopy> bufferCopyRegions;
uint32_t offset = 0;
for (uint32_t i = 0; i < texture.mipLevels; i++)
2016-02-16 15:07:25 +01:00
{
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = i;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = static_cast<uint32_t>(tex2D[i].extent().x);
bufferCopyRegion.imageExtent.height = static_cast<uint32_t>(tex2D[i].extent().y);
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
offset += static_cast<uint32_t>(tex2D[i].size());
2016-02-16 15:07:25 +01:00
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
2016-02-16 15:07:25 +01:00
imageCreateInfo.mipLevels = texture.mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
// Set initial layout of the image to undefined
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
2016-02-16 15:07:25 +01:00
imageCreateInfo.extent = { texture.width, texture.height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
2016-02-16 15:07:25 +01:00
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
2016-02-16 15:07:25 +01:00
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
2016-02-16 15:07:25 +01:00
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
2016-02-16 15:07:25 +01:00
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Image barrier for optimal image
// The sub resource range describes the regions of the image we will be transition
VkImageSubresourceRange subresourceRange = {};
// Image only contains color data
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// Start at first mip level
subresourceRange.baseMipLevel = 0;
// We will transition on all mip levels
subresourceRange.levelCount = texture.mipLevels;
// The 2D texture only has one layer
subresourceRange.layerCount = 1;
// Optimal image will be used as destination for the copy, so we must transfer from our
// initial undefined image layout to the transfer destination layout
2016-02-16 15:07:25 +01:00
setImageLayout(
copyCmd,
2016-02-16 15:07:25 +01:00
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
2016-02-16 15:07:25 +01:00
// Copy mip levels from staging buffer
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
texture.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data());
2016-02-16 15:07:25 +01:00
// Change texture image layout to shader read after all mip levels have been copied
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
setImageLayout(
copyCmd,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture.imageLayout,
subresourceRange);
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
2016-02-16 15:07:25 +01:00
// Clean up staging resources
vkFreeMemory(device, stagingMemory, nullptr);
vkDestroyBuffer(device, stagingBuffer, nullptr);
2016-02-16 15:07:25 +01:00
}
else
{
// Prefer using optimal tiling, as linear tiling
// may support only a small set of features
// depending on implementation (e.g. no mip maps, only one layer, etc.)
VkImage mappableImage;
VkDeviceMemory mappableMemory;
// Load mip map level 0 to linear tiling image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage));
2016-02-16 15:07:25 +01:00
// Get memory requirements for this image
// like size and alignment
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
// Set memory allocation size to required memory size
memAllocInfo.allocationSize = memReqs.size;
// Get memory type that can be mapped to host memory
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
2016-02-16 15:07:25 +01:00
// Allocate host memory
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory));
2016-02-16 15:07:25 +01:00
// Bind allocated image for use
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkBindImageMemory(device, mappableImage, mappableMemory, 0));
2016-02-16 15:07:25 +01:00
// Get sub resource layout
// Mip map count, array layer, etc.
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
// Get sub resources layout
// Includes row pitch, size offsets, etc.
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
// Map image memory
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data));
2016-02-16 15:07:25 +01:00
// Copy image data into memory
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
vkUnmapMemory(device, mappableMemory);
// Linear tiled images don't need to be staged
// and can be directly used as textures
texture.image = mappableImage;
texture.deviceMemory = mappableMemory;
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Setup image memory barrier transfer image to shader read layout
// The sub resource range describes the regions of the image we will be transition
VkImageSubresourceRange subresourceRange = {};
// Image only contains color data
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// Start at first mip level
subresourceRange.baseMipLevel = 0;
// Only one mip level, most implementations won't support more for linear tiled images
subresourceRange.levelCount = 1;
// The 2D texture only has one layer
subresourceRange.layerCount = 1;
setImageLayout(
copyCmd,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
texture.imageLayout,
subresourceRange);
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
2016-02-16 15:07:25 +01:00
}
// Create sampler
// In Vulkan textures are accessed by samplers
// This separates all the sampling information from the
// texture data
// This means you could have multiple sampler objects
// for the same texture with different settings
// Similar to the samplers available with OpenGL 3.3
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
2016-02-16 15:07:25 +01:00
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
// Set max level-of-detail to mip level count of the texture
2016-02-16 15:07:25 +01:00
sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f;
// Enable anisotropic filtering
// This feature is optional, so we must check if it's supported on the device
if (vulkanDevice->features.samplerAnisotropy)
{
// Use max. level of anisotropy for this example
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
sampler.anisotropyEnable = VK_TRUE;
}
else
{
// The device does not support anisotropic filtering
sampler.maxAnisotropy = 1.0;
sampler.anisotropyEnable = VK_FALSE;
}
2016-02-16 15:07:25 +01:00
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler));
2016-02-16 15:07:25 +01:00
// Create image view
// Textures are not directly accessed by the shaders and
// are abstracted by image views containing additional
// information and sub resource ranges
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
2016-02-16 15:07:25 +01:00
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
// The subresource range describes the set of mip levels (and array layers) that can be accessed through this image view
// It's possible to create multiple image views for a single image referring to different (and/or overlapping) ranges of the image
2016-02-16 15:07:25 +01:00
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
// Linear tiling usually won't support mip maps
// Only set mip map count if optimal tiling is used
view.subresourceRange.levelCount = (useStaging) ? texture.mipLevels : 1;
// The view will be based on the texture's image
2016-02-16 15:07:25 +01:00
view.image = texture.image;
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
2016-02-16 15:07:25 +01:00
}
// Free all Vulkan resources used a texture object
2016-02-16 15:07:25 +01:00
void destroyTextureImage(Texture texture)
{
vkDestroyImageView(device, texture.view, nullptr);
2016-02-16 15:07:25 +01:00
vkDestroyImage(device, texture.image, nullptr);
vkDestroySampler(device, texture.sampler, nullptr);
2016-02-16 15:07:25 +01:00
vkFreeMemory(device, texture.deviceMemory, nullptr);
}
void loadTextures()
{
// Vulkan core supports three different compressed texture formats
// As the support differs between implemementations we need to check device features and select a proper format and file
std::string filename;
VkFormat format;
if (deviceFeatures.textureCompressionBC) {
filename = "metalplate01_bc2_unorm.ktx";
format = VK_FORMAT_BC2_UNORM_BLOCK;
}
else if (deviceFeatures.textureCompressionASTC_LDR) {
filename = "metalplate01_astc_8x8_unorm.ktx";
format = VK_FORMAT_ASTC_8x8_UNORM_BLOCK;
}
else if (deviceFeatures.textureCompressionETC2) {
filename = "metalplate01_etc2_unorm.ktx";
format = VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK;
}
else {
vks::tools::exitFatal("Device does not support any compressed texture format!", "Error");
}
loadTexture(getAssetPath() + "textures/" + filename, format, false);
}
2016-02-16 15:07:25 +01:00
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
2016-02-16 15:07:25 +01:00
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
2016-02-16 15:07:25 +01:00
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
2016-02-16 15:07:25 +01:00
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
2016-02-16 15:07:25 +01:00
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
2016-02-16 15:07:25 +01:00
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
2016-02-16 15:07:25 +01:00
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
2016-02-16 15:07:25 +01:00
vkCmdEndRenderPass(drawCmdBuffers[i]);
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
2016-02-16 15:07:25 +01:00
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
2016-02-16 15:07:25 +01:00
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
2016-02-16 15:07:25 +01:00
VulkanExampleBase::submitFrame();
2016-02-16 15:07:25 +01:00
}
void generateQuad()
{
// Setup vertices for a single uv-mapped quad made from two triangles
std::vector<Vertex> vertices =
2016-02-16 15:07:25 +01:00
{
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } },
{ { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }
2016-02-16 15:07:25 +01:00
};
// Setup indices
std::vector<uint32_t> indices = { 0,1,2, 2,3,0 };
indexCount = static_cast<uint32_t>(indices.size());
2016-02-16 15:07:25 +01:00
// Create buffers
// For the sake of simplicity we won't stage the vertex data to the gpu memory
// Vertex buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&vertexBuffer,
vertices.size() * sizeof(Vertex),
vertices.data()));
// Index buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
2016-02-16 15:07:25 +01:00
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indexBuffer,
indices.size() * sizeof(uint32_t),
indices.data()));
2016-02-16 15:07:25 +01:00
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vks::initializers::vertexInputBindingDescription(
2016-02-16 15:07:25 +01:00
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(3);
2016-02-16 15:07:25 +01:00
// Location 0 : Position
vertices.attributeDescriptions[0] =
vks::initializers::vertexInputAttributeDescription(
2016-02-16 15:07:25 +01:00
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
offsetof(Vertex, pos));
2016-02-16 15:07:25 +01:00
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vks::initializers::vertexInputAttributeDescription(
2016-02-16 15:07:25 +01:00
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
offsetof(Vertex, uv));
// Location 1 : Vertex normal
vertices.attributeDescriptions[2] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
offsetof(Vertex, normal));
2016-02-16 15:07:25 +01:00
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
2016-02-16 15:07:25 +01:00
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
2016-02-16 15:07:25 +01:00
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
2016-02-16 15:07:25 +01:00
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
2016-02-16 15:07:25 +01:00
poolSizes.data(),
2);
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
2016-02-16 15:07:25 +01:00
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
2016-02-16 15:07:25 +01:00
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(
2016-02-16 15:07:25 +01:00
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
2016-02-16 15:07:25 +01:00
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
2016-02-16 15:07:25 +01:00
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
2016-02-16 15:07:25 +01:00
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
2016-02-16 15:07:25 +01:00
&descriptorSetLayout,
1);
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
2016-02-16 15:07:25 +01:00
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
2016-02-16 15:07:25 +01:00
descriptorPool,
&descriptorSetLayout,
1);
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
2016-02-16 15:07:25 +01:00
// Setup a descriptor image info for the current texture to be used as a combined image sampler
VkDescriptorImageInfo textureDescriptor;
textureDescriptor.imageView = texture.view; // The image's view (images are never directly accessed by the shader, but rather through views defining subresources)
textureDescriptor.sampler = texture.sampler; // The sampler (Telling the pipeline how to sample the texture, including repeat, border, etc.)
textureDescriptor.imageLayout = texture.imageLayout; // The current layout of the image (Note: Should always fit the actual use, e.g. shader read)
2016-02-16 15:07:25 +01:00
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
2016-02-16 15:07:25 +01:00
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBufferVS.descriptor),
2016-02-16 15:07:25 +01:00
// Binding 1 : Fragment shader texture sampler
// Fragment shader: layout (binding = 1) uniform sampler2D samplerColor;
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // The descriptor set will use a combined image sampler (sampler and image could be split)
1, // Shader binding point 1
&textureDescriptor) // Pointer to the descriptor image for our texture
2016-02-16 15:07:25 +01:00
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
2016-02-16 15:07:25 +01:00
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
2016-02-16 15:07:25 +01:00
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
2016-02-16 15:07:25 +01:00
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
2016-02-16 15:07:25 +01:00
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
2016-02-16 15:07:25 +01:00
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
2016-02-16 15:07:25 +01:00
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
2016-02-16 15:07:25 +01:00
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
2016-02-16 15:07:25 +01:00
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
2016-02-16 15:07:25 +01:00
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
2016-02-16 15:07:25 +01:00
0);
// Load shaders
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/texture/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/texture/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
2016-02-16 15:07:25 +01:00
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
2016-02-16 15:07:25 +01:00
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
2016-02-16 15:07:25 +01:00
pipelineCreateInfo.pStages = shaderStages.data();
2016-05-14 13:50:10 +02:00
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
2016-02-16 15:07:25 +01:00
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
2016-02-16 15:07:25 +01:00
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBufferVS,
2016-02-16 15:07:25 +01:00
sizeof(uboVS),
&uboVS));
2016-02-16 15:07:25 +01:00
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Vertex shader
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f);
glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
2016-02-16 15:07:25 +01:00
uboVS.model = viewMatrix * glm::translate(glm::mat4(), cameraPos);
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
2016-02-16 15:07:25 +01:00
uboVS.viewPos = glm::vec4(0.0f, 0.0f, -zoom, 0.0f);
VK_CHECK_RESULT(uniformBufferVS.map());
memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS));
uniformBufferVS.unmap();
2016-02-16 15:07:25 +01:00
}
void prepare()
{
VulkanExampleBase::prepare();
loadTextures();
2016-02-16 15:07:25 +01:00
generateQuad();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
void changeLodBias(float delta)
{
uboVS.lodBias += delta;
if (uboVS.lodBias < 0.0f)
{
uboVS.lodBias = 0.0f;
}
if (uboVS.lodBias > texture.mipLevels)
2016-02-16 15:07:25 +01:00
{
uboVS.lodBias = (float)texture.mipLevels;
2016-02-16 15:07:25 +01:00
}
updateUniformBuffers();
updateTextOverlay();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case KEY_KPADD:
case GAMEPAD_BUTTON_R1:
changeLodBias(0.1f);
break;
case KEY_KPSUB:
case GAMEPAD_BUTTON_L1:
changeLodBias(-0.1f);
break;
}
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
std::stringstream ss;
ss << std::setprecision(2) << std::fixed << uboVS.lodBias;
#if defined(__ANDROID__)
textOverlay->addText("LOD bias: " + ss.str() + " (Buttons L1/R1 to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
#else
textOverlay->addText("LOD bias: " + ss.str() + " (numpad +/- to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
#endif
2016-02-16 15:07:25 +01:00
}
};
VULKAN_EXAMPLE_MAIN()