procedural-3d-engine/scenerendering/scenerendering.cpp

940 lines
31 KiB
C++
Raw Normal View History

/*
* Vulkan Example - Scene rendering
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*
* Summary:
* Renders a scene made of multiple meshes with different materials and textures.
*
* The example loads a scene made up of multiple meshes into one vertex and index buffer to only
* have one (big) memory allocation. In Vulkan it's advised to keep number of memory allocations
* down and try to allocate large blocks of memory at once instead of having many small allocations.
*
* Every mesh has a separate material and multiple descriptor sets (set = x layout qualifier in GLSL)
* are used to bind a uniform buffer with global matrices and the mesh' material's sampler at once.
*
* To demonstrate another way of passing data the example also uses push constants for passing
* material properties.
*
* Note that this example is just one way of rendering a scene made up of multiple meshes iin Vulkan.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
2016-07-23 21:21:32 +02:00
#include "vulkandevice.hpp"
#include "vulkanbuffer.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout used in this example
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
glm::vec3 color;
};
// Scene related structs
// Shader properites for a material
// Will be passed to the shaders using push constant
struct SceneMaterialProperites
{
glm::vec4 ambient;
glm::vec4 diffuse;
glm::vec4 specular;
float opacity;
};
// Stores info on the materials used in the scene
struct SceneMaterial
{
std::string name;
// Material properties
SceneMaterialProperites properties;
// The example only uses a diffuse channel
vkTools::VulkanTexture diffuse;
// The material's descriptor contains the material descriptors
VkDescriptorSet descriptorSet;
// Pointer to the pipeline used by this material
VkPipeline *pipeline;
};
// Stores per-mesh Vulkan resources
struct SceneMesh
{
// Index of first index in the scene buffer
uint32_t indexBase;
uint32_t indexCount;
// Pointer to the material used by this mesh
SceneMaterial *material;
};
// Class for loading the scene and generating all Vulkan resources
class Scene
{
private:
2016-07-23 21:21:32 +02:00
vk::VulkanDevice *vulkanDevice;
VkQueue queue;
VkDescriptorPool descriptorPool;
// We will be using separate descriptor sets (and bindings)
// for material and scene related uniforms
struct
{
VkDescriptorSetLayout material;
VkDescriptorSetLayout scene;
} descriptorSetLayouts;
// We will be using one single index and vertex buffer
// containing vertices and indices for all meshes in the scene
// This allows us to keep memory allocations down
vk::Buffer vertexBuffer;
vk::Buffer indexBuffer;
VkDescriptorSet descriptorSetScene;
vkTools::VulkanTextureLoader *textureLoader;
const aiScene* aScene;
// Get materials from the assimp scene and map to our scene structures
void loadMaterials()
{
materials.resize(aScene->mNumMaterials);
for (size_t i = 0; i < materials.size(); i++)
{
materials[i] = {};
aiString name;
aScene->mMaterials[i]->Get(AI_MATKEY_NAME, name);
// Properties
aiColor4D color;
aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_AMBIENT, color);
2016-06-12 17:38:06 +02:00
materials[i].properties.ambient = glm::make_vec4(&color.r) + glm::vec4(0.1f);
aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_DIFFUSE, color);
materials[i].properties.diffuse = glm::make_vec4(&color.r);
aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_SPECULAR, color);
materials[i].properties.specular = glm::make_vec4(&color.r);
aScene->mMaterials[i]->Get(AI_MATKEY_OPACITY, materials[i].properties.opacity);
if ((materials[i].properties.opacity) > 0.0f)
materials[i].properties.specular = glm::vec4(0.0f);
materials[i].name = name.C_Str();
std::cout << "Material \"" << materials[i].name << "\"" << std::endl;
// Textures
aiString texturefile;
// Diffuse
aScene->mMaterials[i]->GetTexture(aiTextureType_DIFFUSE, 0, &texturefile);
if (aScene->mMaterials[i]->GetTextureCount(aiTextureType_DIFFUSE) > 0)
{
std::cout << " Diffuse: \"" << texturefile.C_Str() << "\"" << std::endl;
std::string fileName = std::string(texturefile.C_Str());
std::replace(fileName.begin(), fileName.end(), '\\', '/');
textureLoader->loadTexture(assetPath + fileName, VK_FORMAT_BC3_UNORM_BLOCK, &materials[i].diffuse);
}
else
{
std::cout << " Material has no diffuse, using dummy texture!" << std::endl;
// todo : separate pipeline and layout
textureLoader->loadTexture(assetPath + "dummy.ktx", VK_FORMAT_BC2_UNORM_BLOCK, &materials[i].diffuse);
}
// For scenes with multiple textures per material we would need to check for additional texture types, e.g.:
// aiTextureType_HEIGHT, aiTextureType_OPACITY, aiTextureType_SPECULAR, etc.
// Assign pipeline
materials[i].pipeline = (materials[i].properties.opacity == 0.0f) ? &pipelines.solid : &pipelines.blending;
}
// Generate descriptor sets for the materials
// Descriptor pool
std::vector<VkDescriptorPoolSize> poolSizes;
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, static_cast<uint32_t>(materials.size())));
poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(materials.size())));
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
static_cast<uint32_t>(materials.size()) + 1);
2016-07-23 21:21:32 +02:00
VK_CHECK_RESULT(vkCreateDescriptorPool(vulkanDevice->logicalDevice, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor set and pipeline layouts
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
VkDescriptorSetLayoutCreateInfo descriptorLayout;
// Set 0: Scene matrices
setLayoutBindings.push_back(vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0));
descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
2016-07-23 21:21:32 +02:00
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(vulkanDevice->logicalDevice, &descriptorLayout, nullptr, &descriptorSetLayouts.scene));
// Set 1: Material data
setLayoutBindings.clear();
setLayoutBindings.push_back(vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
0));
2016-07-23 21:21:32 +02:00
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(vulkanDevice->logicalDevice, &descriptorLayout, nullptr, &descriptorSetLayouts.material));
// Setup pipeline layout
std::array<VkDescriptorSetLayout, 2> setLayouts = { descriptorSetLayouts.scene, descriptorSetLayouts.material };
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
// We will be using a push constant block to pass material properties to the fragment shaders
VkPushConstantRange pushConstantRange = vkTools::initializers::pushConstantRange(
VK_SHADER_STAGE_FRAGMENT_BIT,
sizeof(SceneMaterialProperites),
0);
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
2016-07-23 21:21:32 +02:00
VK_CHECK_RESULT(vkCreatePipelineLayout(vulkanDevice->logicalDevice, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Material descriptor sets
for (size_t i = 0; i < materials.size(); i++)
{
// Descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayouts.material,
1);
2016-07-23 21:21:32 +02:00
VK_CHECK_RESULT(vkAllocateDescriptorSets(vulkanDevice->logicalDevice, &allocInfo, &materials[i].descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
// todo : only use image sampler descriptor set and use one scene ubo for matrices
// Binding 0: Diffuse texture
writeDescriptorSets.push_back(vkTools::initializers::writeDescriptorSet(
materials[i].descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
0,
&materials[i].diffuse.descriptor));
vkUpdateDescriptorSets(vulkanDevice->logicalDevice, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
// Scene descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayouts.scene,
1);
2016-07-23 21:21:32 +02:00
VK_CHECK_RESULT(vkAllocateDescriptorSets(vulkanDevice->logicalDevice, &allocInfo, &descriptorSetScene));
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
// Binding 0 : Vertex shader uniform buffer
writeDescriptorSets.push_back(vkTools::initializers::writeDescriptorSet(
descriptorSetScene,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffer.descriptor));
vkUpdateDescriptorSets(vulkanDevice->logicalDevice, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
// Load all meshes from the scene and generate the buffers for rendering them
void loadMeshes(VkCommandBuffer copyCmd)
{
std::vector<Vertex> vertices;
std::vector<uint32_t> indices;
uint32_t indexBase = 0;
meshes.resize(aScene->mNumMeshes);
for (uint32_t i = 0; i < meshes.size(); i++)
{
aiMesh *aMesh = aScene->mMeshes[i];
std::cout << "Mesh \"" << aMesh->mName.C_Str() << "\"" << std::endl;
std::cout << " Material: \"" << materials[aMesh->mMaterialIndex].name << "\"" << std::endl;
std::cout << " Faces: " << aMesh->mNumFaces << std::endl;
meshes[i].material = &materials[aMesh->mMaterialIndex];
meshes[i].indexBase = indexBase;
meshes[i].indexCount = aMesh->mNumFaces * 3;
// Vertices
bool hasUV = aMesh->HasTextureCoords(0);
bool hasColor = aMesh->HasVertexColors(0);
bool hasNormals = aMesh->HasNormals();
for (uint32_t v = 0; v < aMesh->mNumVertices; v++)
{
Vertex vertex;
vertex.pos = glm::make_vec3(&aMesh->mVertices[v].x);
vertex.pos.y = -vertex.pos.y;
vertex.uv = hasUV ? glm::make_vec2(&aMesh->mTextureCoords[0][v].x) : glm::vec2(0.0f);
vertex.normal = hasNormals ? glm::make_vec3(&aMesh->mNormals[v].x) : glm::vec3(0.0f);
vertex.normal.y = -vertex.normal.y;
vertex.color = hasColor ? glm::make_vec3(&aMesh->mColors[0][v].r) : glm::vec3(1.0f);
vertices.push_back(vertex);
}
// Indices
for (uint32_t f = 0; f < aMesh->mNumFaces; f++)
{
for (uint32_t j = 0; j < 3; j++)
{
indices.push_back(aMesh->mFaces[f].mIndices[j]);
}
}
indexBase += aMesh->mNumFaces * 3;
}
// Create buffers
// For better performance we only create one index and vertex buffer to keep number of memory allocations down
size_t vertexDataSize = vertices.size() * sizeof(Vertex);
size_t indexDataSize = indices.size() * sizeof(uint32_t);
vk::Buffer vertexStaging, indexStaging;
// Vertex buffer
// Staging buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&vertexStaging,
static_cast<uint32_t>(vertexDataSize),
vertices.data()));
// Target
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&vertexBuffer,
static_cast<uint32_t>(vertexDataSize)));
// Index buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indexStaging,
static_cast<uint32_t>(indexDataSize),
indices.data()));
// Target
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&indexBuffer,
static_cast<uint32_t>(indexDataSize)));
// Copy
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(copyCmd, &cmdBufInfo));
VkBufferCopy copyRegion = {};
copyRegion.size = vertexDataSize;
vkCmdCopyBuffer(
copyCmd,
vertexStaging.buffer,
vertexBuffer.buffer,
1,
&copyRegion);
copyRegion.size = indexDataSize;
vkCmdCopyBuffer(
copyCmd,
indexStaging.buffer,
indexBuffer.buffer,
1,
&copyRegion);
VK_CHECK_RESULT(vkEndCommandBuffer(copyCmd));
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &copyCmd;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VK_CHECK_RESULT(vkQueueWaitIdle(queue));
//todo: fence
vertexStaging.destroy();
indexStaging.destroy();
}
public:
#if defined(__ANDROID__)
AAssetManager* assetManager = nullptr;
#endif
std::string assetPath = "";
std::vector<SceneMaterial> materials;
std::vector<SceneMesh> meshes;
// Shared ubo containing matrices used by all
// materials and meshes
vkTools::UniformData uniformBuffer;
struct {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
2016-06-12 17:38:06 +02:00
glm::vec4 lightPos = glm::vec4(1.25f, 8.35f, 0.0f, 0.0f);
} uniformData;
// Scene uses multiple pipelines
struct {
VkPipeline solid;
VkPipeline blending;
VkPipeline wireframe;
} pipelines;
// Shared pipeline layout
VkPipelineLayout pipelineLayout;
// For displaying only a single part of the scene
bool renderSingleScenePart = false;
uint32_t scenePartIndex = 0;
2016-07-23 21:21:32 +02:00
// Default constructor
Scene(vk::VulkanDevice *vulkanDevice, VkQueue queue, vkTools::VulkanTextureLoader *textureloader)
{
2016-07-23 21:21:32 +02:00
this->vulkanDevice = vulkanDevice;
this->queue = queue;
this->textureLoader = textureloader;
// Prepare uniform buffer for global matrices
VkMemoryRequirements memReqs;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uniformData));
2016-07-23 21:21:32 +02:00
VK_CHECK_RESULT(vkCreateBuffer(vulkanDevice->logicalDevice, &bufferCreateInfo, nullptr, &uniformBuffer.buffer));
vkGetBufferMemoryRequirements(vulkanDevice->logicalDevice, uniformBuffer.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
2016-07-23 21:21:32 +02:00
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &memAlloc, nullptr, &uniformBuffer.memory));
VK_CHECK_RESULT(vkBindBufferMemory(vulkanDevice->logicalDevice, uniformBuffer.buffer, uniformBuffer.memory, 0));
VK_CHECK_RESULT(vkMapMemory(vulkanDevice->logicalDevice, uniformBuffer.memory, 0, sizeof(uniformData), 0, (void **)&uniformBuffer.mapped));
uniformBuffer.descriptor.offset = 0;
uniformBuffer.descriptor.buffer = uniformBuffer.buffer;
uniformBuffer.descriptor.range = sizeof(uniformData);
}
2016-07-23 21:21:32 +02:00
// Default destructor
~Scene()
{
vertexBuffer.destroy();
indexBuffer.destroy();
for (auto material : materials)
{
textureLoader->destroyTexture(material.diffuse);
}
2016-07-23 21:21:32 +02:00
vkDestroyPipelineLayout(vulkanDevice->logicalDevice, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(vulkanDevice->logicalDevice, descriptorSetLayouts.material, nullptr);
vkDestroyDescriptorSetLayout(vulkanDevice->logicalDevice, descriptorSetLayouts.scene, nullptr);
vkDestroyDescriptorPool(vulkanDevice->logicalDevice, descriptorPool, nullptr);
vkDestroyPipeline(vulkanDevice->logicalDevice, pipelines.solid, nullptr);
vkDestroyPipeline(vulkanDevice->logicalDevice, pipelines.blending, nullptr);
vkDestroyPipeline(vulkanDevice->logicalDevice, pipelines.wireframe, nullptr);
vkTools::destroyUniformData(vulkanDevice->logicalDevice, &uniformBuffer);
}
void load(std::string filename, VkCommandBuffer copyCmd)
{
Assimp::Importer Importer;
int flags = aiProcess_PreTransformVertices | aiProcess_Triangulate | aiProcess_GenNormals;
#if defined(__ANDROID__)
AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
void *meshData = malloc(size);
AAsset_read(asset, meshData, size);
AAsset_close(asset);
aScene = Importer.ReadFileFromMemory(meshData, size, flags);
free(meshData);
#else
aScene = Importer.ReadFile(filename.c_str(), flags);
#endif
if (aScene)
{
loadMaterials();
loadMeshes(copyCmd);
}
else
{
printf("Error parsing '%s': '%s'\n", filename.c_str(), Importer.GetErrorString());
#if defined(__ANDROID__)
LOGE("Error parsing '%s': '%s'", filename.c_str(), Importer.GetErrorString());
#endif
}
}
// Renders the scene into an active command buffer
// In a real world application we would do some visibility culling in here
void render(VkCommandBuffer cmdBuffer, bool wireframe)
{
VkDeviceSize offsets[1] = { 0 };
// Bind scene vertex and index buffers
vkCmdBindVertexBuffers(cmdBuffer, 0, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(cmdBuffer, indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
for (size_t i = 0; i < meshes.size(); i++)
{
if ((renderSingleScenePart) && (i != scenePartIndex))
continue;
// todo : per material pipelines
// vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *mesh.material->pipeline);
// We will be using multiple descriptor sets for rendering
// In GLSL the selection is done via the set and binding keywords
// VS: layout (set = 0, binding = 0) uniform UBO;
// FS: layout (set = 1, binding = 0) uniform sampler2D samplerColorMap;
std::array<VkDescriptorSet, 2> descriptorSets;
// Set 0: Scene descriptor set containing global matrices
descriptorSets[0] = descriptorSetScene;
// Set 1: Per-Material descriptor set containing bound images
descriptorSets[1] = meshes[i].material->descriptorSet;
vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : *meshes[i].material->pipeline);
vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, static_cast<uint32_t>(descriptorSets.size()), descriptorSets.data(), 0, NULL);
// Pass material properies via push constants
vkCmdPushConstants(
cmdBuffer,
pipelineLayout,
VK_SHADER_STAGE_FRAGMENT_BIT,
0,
sizeof(SceneMaterialProperites),
&meshes[i].material->properties);
// Render from the global scene vertex buffer using the mesh index offset
vkCmdDrawIndexed(cmdBuffer, meshes[i].indexCount, 1, 0, meshes[i].indexBase, 0);
}
}
};
class VulkanExample : public VulkanExampleBase
{
public:
bool wireframe = false;
bool attachLight = false;
Scene *scene = nullptr;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
rotationSpeed = 0.5f;
enableTextOverlay = true;
2016-06-20 20:17:46 +02:00
camera.type = Camera::CameraType::firstperson;
camera.movementSpeed = 7.5f;
camera.position = { 15.0f, -13.5f, 0.0f };
camera.setRotation(glm::vec3(5.0f, 90.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
title = "Vulkan Example - Scene rendering";
}
~VulkanExample()
{
delete(scene);
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f} };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
scene->render(drawCmdBuffers[i], wireframe);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Texture coordinates
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6);
// Location 3 : Color
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
2016-06-12 17:38:06 +02:00
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
// Solid rendering pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/scenerendering/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/scenerendering/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
scene->pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.solid));
// Alpha blended pipeline
rasterizationState.cullMode = VK_CULL_MODE_NONE;
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_COLOR;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.blending));
// Wire frame rendering pipeline
rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
blendAttachmentState.blendEnable = VK_FALSE;
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
rasterizationState.lineWidth = 1.0f;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.wireframe));
}
void updateUniformBuffers()
{
if (attachLight)
{
scene->uniformData.lightPos = glm::vec4(-camera.position, 1.0f);
}
scene->uniformData.projection = camera.matrices.perspective;
scene->uniformData.view = camera.matrices.view;
scene->uniformData.model = glm::mat4();
memcpy(scene->uniformBuffer.mapped, &scene->uniformData, sizeof(scene->uniformData));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void loadScene()
{
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false);
2016-07-23 21:21:32 +02:00
scene = new Scene(vulkanDevice, queue, textureLoader);
#if defined(__ANDROID__)
scene->assetManager = androidApp->activity->assetManager;
#endif
scene->assetPath = getAssetPath() + "models/sibenik/";
scene->load(getAssetPath() + "models/sibenik/sibenik.dae", copyCmd);
vkFreeCommandBuffers(device, cmdPool, 1, &copyCmd);
updateUniformBuffers();
}
void prepare()
{
VulkanExampleBase::prepare();
setupVertexDescriptions();
loadScene();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case KEY_SPACE:
case GAMEPAD_BUTTON_A:
wireframe = !wireframe;
reBuildCommandBuffers();
break;
case KEY_P:
scene->renderSingleScenePart = !scene->renderSingleScenePart;
reBuildCommandBuffers();
updateTextOverlay();
break;
case KEY_KPADD:
scene->scenePartIndex = (scene->scenePartIndex < static_cast<uint32_t>(scene->meshes.size())) ? scene->scenePartIndex + 1 : 0;
reBuildCommandBuffers();
updateTextOverlay();
break;
case KEY_KPSUB:
scene->scenePartIndex = (scene->scenePartIndex > 0) ? scene->scenePartIndex - 1 : static_cast<uint32_t>(scene->meshes.size()) - 1;
updateTextOverlay();
reBuildCommandBuffers();
break;
case KEY_L:
attachLight = !attachLight;
updateUniformBuffers();
break;
}
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
#if defined(__ANDROID__)
textOverlay->addText("Press \"Button A\" to toggle wireframe", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
#else
2016-07-23 21:21:32 +02:00
textOverlay->addText("Press \"space\" to toggle wireframe", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
if ((scene) && (scene->renderSingleScenePart))
{
2016-06-20 22:06:36 +02:00
textOverlay->addText("Rendering mesh " + std::to_string(scene->scenePartIndex + 1) + " of " + std::to_string(static_cast<uint32_t>(scene->meshes.size())) + "(\"p\" to toggle)", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
}
else
{
2016-06-20 22:06:36 +02:00
textOverlay->addText("Rendering whole scene (\"p\" to toggle)", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
}
2016-06-20 22:06:36 +02:00
#endif
}
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
vulkanExample = new VulkanExample();
#if defined(_WIN32)
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
vulkanExample->renderLoop();
delete(vulkanExample);
#if !defined(__ANDROID__)
return 0;
#endif
}