procedural-3d-engine/examples/shaderobjects/shaderobjects.cpp

478 lines
23 KiB
C++
Raw Normal View History

/*
* Vulkan Example - Using shader objects via VK_EXT_shader_object
*
* Copyright (C) 2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
class VulkanExample: public VulkanExampleBase
{
public:
vkglTF::Model scene;
// Same uniform buffer layout as shader
2024-01-02 20:00:06 +01:00
struct UniformData {
glm::mat4 projection;
glm::mat4 modelView;
glm::vec4 lightPos = glm::vec4(0.0f, 2.0f, 1.0f, 0.0f);
2024-01-02 20:00:06 +01:00
} uniformData;
vks::Buffer uniformBuffer;
2024-01-02 20:00:06 +01:00
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VkShaderEXT shaders[2];
2023-04-28 07:12:12 +02:00
VkPhysicalDeviceShaderObjectFeaturesEXT enabledShaderObjectFeaturesEXT{};
VkPhysicalDeviceDynamicRenderingFeaturesKHR enabledDynamicRenderingFeaturesKHR{};
2024-01-02 20:00:06 +01:00
PFN_vkCreateShadersEXT vkCreateShadersEXT{ VK_NULL_HANDLE };
PFN_vkDestroyShaderEXT vkDestroyShaderEXT{ VK_NULL_HANDLE };
PFN_vkCmdBindShadersEXT vkCmdBindShadersEXT{ VK_NULL_HANDLE };
PFN_vkGetShaderBinaryDataEXT vkGetShaderBinaryDataEXT{ VK_NULL_HANDLE };
2023-04-28 07:12:12 +02:00
// VK_EXT_shader_objects requires render passes to be dynamic
2024-01-02 20:00:06 +01:00
PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR{ VK_NULL_HANDLE };
PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR{ VK_NULL_HANDLE };
2023-04-28 07:12:12 +02:00
// With VK_EXT_shader_object pipeline state must be set at command buffer creation using these functions
2024-01-02 20:00:06 +01:00
PFN_vkCmdSetAlphaToCoverageEnableEXT vkCmdSetAlphaToCoverageEnableEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetColorBlendEnableEXT vkCmdSetColorBlendEnableEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetColorWriteMaskEXT vkCmdSetColorWriteMaskEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetCullModeEXT vkCmdSetCullModeEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetDepthBiasEnableEXT vkCmdSetDepthBiasEnableEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetDepthCompareOpEXT vkCmdSetDepthCompareOpEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetDepthTestEnableEXT vkCmdSetDepthTestEnableEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetDepthWriteEnableEXT vkCmdSetDepthWriteEnableEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetFrontFaceEXT vkCmdSetFrontFaceEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetPolygonModeEXT vkCmdSetPolygonModeEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetPrimitiveRestartEnableEXT vkCmdSetPrimitiveRestartEnableEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetPrimitiveTopologyEXT vkCmdSetPrimitiveTopologyEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetRasterizationSamplesEXT vkCmdSetRasterizationSamplesEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetRasterizerDiscardEnableEXT vkCmdSetRasterizerDiscardEnableEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetSampleMaskEXT vkCmdSetSampleMaskEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetScissorWithCountEXT vkCmdSetScissorWithCountEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetStencilTestEnableEXT vkCmdSetStencilTestEnableEXT{ VK_NULL_HANDLE };
PFN_vkCmdSetViewportWithCountEXT vkCmdSetViewportWithCountEXT{ VK_NULL_HANDLE };
// VK_EXT_vertex_input_dynamic_state
2024-01-02 20:00:06 +01:00
PFN_vkCmdSetVertexInputEXT vkCmdSetVertexInputEXT{ VK_NULL_HANDLE };
VulkanExample() : VulkanExampleBase()
{
title = "Shader objects (VK_EXT_shader_object)";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -10.5f));
camera.setRotation(glm::vec3(-25.0f, 15.0f, 0.0f));
camera.setRotationSpeed(0.5f);
camera.setPerspective(60.0f, (float)(width) / (float)height, 0.1f, 256.0f);
enabledDeviceExtensions.push_back(VK_EXT_SHADER_OBJECT_EXTENSION_NAME);
2023-04-28 07:12:12 +02:00
enabledDeviceExtensions.push_back(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME);
// With VK_EXT_shader_object all baked pipeline state is set dynamically at command buffer creation, so we need to enable additional extensions
enabledDeviceExtensions.push_back(VK_EXT_EXTENDED_DYNAMIC_STATE_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME);
2023-04-28 07:12:12 +02:00
// Since we are not requiring Vulkan 1.2, we need to enable some additional extensios for dynamic rendering
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME);
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
2023-04-28 07:12:12 +02:00
enabledShaderObjectFeaturesEXT.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_OBJECT_FEATURES_EXT;
enabledShaderObjectFeaturesEXT.shaderObject = VK_TRUE;
enabledDynamicRenderingFeaturesKHR.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES_KHR;
enabledDynamicRenderingFeaturesKHR.dynamicRendering = VK_TRUE;
enabledDynamicRenderingFeaturesKHR.pNext = &enabledShaderObjectFeaturesEXT;
2023-04-28 07:12:12 +02:00
deviceCreatepNextChain = &enabledDynamicRenderingFeaturesKHR;
}
~VulkanExample()
{
2024-01-02 20:00:06 +01:00
if (device) {
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
uniformBuffer.destroy();
vkDestroyShaderEXT(device, shaders[0], nullptr);
vkDestroyShaderEXT(device, shaders[1], nullptr);
}
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
scene.loadFromFile(getAssetPath() + "models/treasure_smooth.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
// Sets
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
// Loads a binary shader file
void _loadShader(std::string filename, char* &code, size_t &size) {
// @todo: Android
std::ifstream is(filename, std::ios::binary | std::ios::in | std::ios::ate);
if (is.is_open())
{
size = is.tellg();
is.seekg(0, std::ios::beg);
code = new char[size];
is.read(code, size);
is.close();
assert(size > 0);
}
else
{
vks::tools::exitFatal("Error: Could not open shader " + filename, VK_ERROR_UNKNOWN);
}
}
void createShaderObjects()
{
size_t shaderCodeSizes[2]{};
char* shaderCodes[2]{};
VkShaderCreateInfoEXT shaderCreateInfos[2]{};
// With VK_EXT_shader_object we can generate an implementation dependent binary file that's faster to load
// So we check if the binray files exist and if we can load it instead of the SPIR-V
bool binaryShadersLoaded = false;
if (vks::tools::fileExists(getShadersPath() + "shaderobjects/phong.vert.bin") && vks::tools::fileExists(getShadersPath() + "shaderobjects/phong.frag.bin")) {
// VS
_loadShader(getShadersPath() + "shaderobjects/phong.vert.bin", shaderCodes[0], shaderCodeSizes[0]);
shaderCreateInfos[0].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT;
shaderCreateInfos[0].flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT;
shaderCreateInfos[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
shaderCreateInfos[0].nextStage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderCreateInfos[0].codeType = VK_SHADER_CODE_TYPE_BINARY_EXT;
shaderCreateInfos[0].pCode = shaderCodes[0];
shaderCreateInfos[0].codeSize = shaderCodeSizes[0];
shaderCreateInfos[0].pName = "main";
shaderCreateInfos[0].setLayoutCount = 1;
shaderCreateInfos[0].pSetLayouts = &descriptorSetLayout;
// FS
_loadShader(getShadersPath() + "shaderobjects/phong.frag.bin", shaderCodes[1], shaderCodeSizes[1]);
shaderCreateInfos[1].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT;
shaderCreateInfos[1].flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT;
shaderCreateInfos[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderCreateInfos[1].nextStage = 0;
shaderCreateInfos[1].codeType = VK_SHADER_CODE_TYPE_BINARY_EXT;
shaderCreateInfos[1].pCode = shaderCodes[1];
shaderCreateInfos[1].codeSize = shaderCodeSizes[1];
shaderCreateInfos[1].pName = "main";
shaderCreateInfos[1].setLayoutCount = 1;
shaderCreateInfos[1].pSetLayouts = &descriptorSetLayout;
VkResult result = vkCreateShadersEXT(device, 2, shaderCreateInfos, nullptr, shaders);
// If the function returns e.g. VK_ERROR_INCOMPATIBLE_SHADER_BINARY_EXT, the binary file is no longer (or not at all) compatible with the current implementation
if (result == VK_SUCCESS) {
binaryShadersLoaded = true;
} else {
std::cout << "Could not load binary shader files (" << vks::tools::errorString(result) << ", loading SPIR - V instead\n";
}
}
// If the binary files weren't present, or we could not load them, we load from SPIR-V
if (!binaryShadersLoaded) {
// VS
_loadShader(getShadersPath() + "shaderobjects/phong.vert.spv", shaderCodes[0], shaderCodeSizes[0]);
shaderCreateInfos[0].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT;
shaderCreateInfos[0].flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT;
shaderCreateInfos[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
shaderCreateInfos[0].nextStage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderCreateInfos[0].codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT;
shaderCreateInfos[0].pCode = shaderCodes[0];
shaderCreateInfos[0].codeSize = shaderCodeSizes[0];
shaderCreateInfos[0].pName = "main";
shaderCreateInfos[0].setLayoutCount = 1;
shaderCreateInfos[0].pSetLayouts = &descriptorSetLayout;
// FS
_loadShader(getShadersPath() + "shaderobjects/phong.frag.spv", shaderCodes[1], shaderCodeSizes[1]);
shaderCreateInfos[1].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT;
shaderCreateInfos[1].flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT;
shaderCreateInfos[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderCreateInfos[1].nextStage = 0;
shaderCreateInfos[1].codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT;
shaderCreateInfos[1].pCode = shaderCodes[1];
shaderCreateInfos[1].codeSize = shaderCodeSizes[1];
shaderCreateInfos[1].pName = "main";
shaderCreateInfos[1].setLayoutCount = 1;
shaderCreateInfos[1].pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreateShadersEXT(device, 2, shaderCreateInfos, nullptr, shaders));
// Store the binary shader files so we can try to load them at the next start
size_t dataSize{ 0 };
char* data{ nullptr };
std::fstream is;
vkGetShaderBinaryDataEXT(device, shaders[0], &dataSize, nullptr);
data = new char[dataSize];
vkGetShaderBinaryDataEXT(device, shaders[0], &dataSize, data);
is.open(getShadersPath() + "shaderobjects/phong.vert.bin", std::ios::binary | std::ios::out);
is.write(data, dataSize);
is.close();
delete[] data;
vkGetShaderBinaryDataEXT(device, shaders[1], &dataSize, nullptr);
data = new char[dataSize];
vkGetShaderBinaryDataEXT(device, shaders[1], &dataSize, data);
is.open(getShadersPath() + "shaderobjects/phong.frag.bin", std::ios::binary | std::ios::out);
is.write(data, dataSize);
is.close();
delete[] data;
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
2023-04-28 07:12:12 +02:00
// Transition color and depth images for drawing
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
swapChain.images[i],
2023-04-28 07:12:12 +02:00
0,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
depthStencil.image,
0,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
VkImageSubresourceRange{ VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1 });
// New structures are used to define the attachments used in dynamic rendering
VkRenderingAttachmentInfoKHR colorAttachment{};
colorAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
colorAttachment.imageView = swapChain.imageViews[i];
colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
2023-04-28 07:12:12 +02:00
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
colorAttachment.clearValue.color = { 0.0f,0.0f,0.0f,0.0f };
// A single depth stencil attachment info can be used, but they can also be specified separately.
// When both are specified separately, the only requirement is that the image view is identical.
VkRenderingAttachmentInfoKHR depthStencilAttachment{};
depthStencilAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
depthStencilAttachment.imageView = depthStencil.view;
depthStencilAttachment.imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
depthStencilAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
depthStencilAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
depthStencilAttachment.clearValue.depthStencil = { 1.0f, 0 };
VkRenderingInfoKHR renderingInfo{};
renderingInfo.sType = VK_STRUCTURE_TYPE_RENDERING_INFO_KHR;
renderingInfo.renderArea = { 0, 0, width, height };
renderingInfo.layerCount = 1;
renderingInfo.colorAttachmentCount = 1;
renderingInfo.pColorAttachments = &colorAttachment;
renderingInfo.pDepthAttachment = &depthStencilAttachment;
renderingInfo.pStencilAttachment = &depthStencilAttachment;
// Begin dynamic rendering
vkCmdBeginRenderingKHR(drawCmdBuffers[i], &renderingInfo);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
// No more pipelines required, everything is bound at command buffer level
// This also means that we need to explicitly set a lot of the state to be spec compliant
2023-04-23 09:08:27 +02:00
vkCmdSetViewportWithCountEXT(drawCmdBuffers[i], 1, &viewport);
vkCmdSetScissorWithCountEXT(drawCmdBuffers[i], 1, &scissor);
vkCmdSetCullModeEXT(drawCmdBuffers[i], VK_CULL_MODE_BACK_BIT);
vkCmdSetFrontFaceEXT(drawCmdBuffers[i], VK_FRONT_FACE_COUNTER_CLOCKWISE);
vkCmdSetDepthTestEnableEXT(drawCmdBuffers[i], VK_TRUE);
vkCmdSetDepthWriteEnableEXT(drawCmdBuffers[i], VK_TRUE);
vkCmdSetDepthCompareOpEXT(drawCmdBuffers[i], VK_COMPARE_OP_LESS_OR_EQUAL);
vkCmdSetPrimitiveTopologyEXT(drawCmdBuffers[i], VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST);
vkCmdSetRasterizerDiscardEnableEXT(drawCmdBuffers[i], VK_FALSE);
vkCmdSetPolygonModeEXT(drawCmdBuffers[i], VK_POLYGON_MODE_FILL);
vkCmdSetRasterizationSamplesEXT(drawCmdBuffers[i], VK_SAMPLE_COUNT_1_BIT);
vkCmdSetAlphaToCoverageEnableEXT(drawCmdBuffers[i], VK_FALSE);
vkCmdSetDepthBiasEnableEXT(drawCmdBuffers[i], VK_FALSE);
vkCmdSetStencilTestEnableEXT(drawCmdBuffers[i], VK_FALSE);
vkCmdSetPrimitiveRestartEnableEXT(drawCmdBuffers[i], VK_FALSE);
const uint32_t sampleMask = 0xFF;
vkCmdSetSampleMaskEXT(drawCmdBuffers[i], VK_SAMPLE_COUNT_1_BIT, &sampleMask);
const VkBool32 colorBlendEnables = false;
const VkColorComponentFlags colorBlendComponentFlags = 0xf;
const VkColorBlendEquationEXT colorBlendEquation{};
vkCmdSetColorBlendEnableEXT(drawCmdBuffers[i], 0, 1, &colorBlendEnables);
vkCmdSetColorWriteMaskEXT(drawCmdBuffers[i], 0, 1, &colorBlendComponentFlags);
VkVertexInputBindingDescription2EXT vertexInputBinding{};
vertexInputBinding.sType = VK_STRUCTURE_TYPE_VERTEX_INPUT_BINDING_DESCRIPTION_2_EXT;
vertexInputBinding.binding = 0;
vertexInputBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
vertexInputBinding.stride = sizeof(vkglTF::Vertex);
vertexInputBinding.divisor = 1;
std::vector<VkVertexInputAttributeDescription2EXT> vertexAttributes = {
{ VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT, nullptr, 0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(vkglTF::Vertex, pos) },
{ VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT, nullptr, 1, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(vkglTF::Vertex, normal) },
{ VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT, nullptr, 2, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(vkglTF::Vertex, color) }
};
vkCmdSetVertexInputEXT(drawCmdBuffers[i], 1, &vertexInputBinding, 3, vertexAttributes.data());
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
scene.bindBuffers(drawCmdBuffers[i]);
// Binding the shaders
VkShaderStageFlagBits stages[2] = { VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_FRAGMENT_BIT };
vkCmdBindShadersEXT(drawCmdBuffers[i], 2, stages, shaders);
scene.draw(drawCmdBuffers[i]);
// @todo: Currently disabled, the UI needs to be adopated to work with shader objects
// drawUI(drawCmdBuffers[i]);
2023-04-28 07:12:12 +02:00
// End dynamic rendering
vkCmdEndRenderingKHR(drawCmdBuffers[i]);
// Transition color image for presentation
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
swapChain.images[i],
2023-04-28 07:12:12 +02:00
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
0,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Create the vertex shader uniform buffer block
2024-01-02 20:00:06 +01:00
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(UniformData)));
VK_CHECK_RESULT(uniformBuffer.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
2024-01-02 20:00:06 +01:00
uniformData.projection = camera.matrices.perspective;
uniformData.modelView = camera.matrices.view;
memcpy(uniformBuffer.mapped, &uniformData, sizeof(UniformData));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
// As this is an extension, we need to explicitly load the function pointers for the shader object commands used in this sample
vkCreateShadersEXT = reinterpret_cast<PFN_vkCreateShadersEXT>(vkGetDeviceProcAddr(device, "vkCreateShadersEXT"));
2023-08-04 19:27:49 +02:00
vkDestroyShaderEXT = reinterpret_cast<PFN_vkDestroyShaderEXT>(vkGetDeviceProcAddr(device, "vkDestroyShaderEXT"));
vkCmdBindShadersEXT = reinterpret_cast<PFN_vkCmdBindShadersEXT>(vkGetDeviceProcAddr(device, "vkCmdBindShadersEXT"));
vkGetShaderBinaryDataEXT = reinterpret_cast<PFN_vkGetShaderBinaryDataEXT>(vkGetDeviceProcAddr(device, "vkGetShaderBinaryDataEXT"));
2023-04-28 07:12:12 +02:00
vkCmdBeginRenderingKHR = reinterpret_cast<PFN_vkCmdBeginRenderingKHR>(vkGetDeviceProcAddr(device, "vkCmdBeginRenderingKHR"));
vkCmdEndRenderingKHR = reinterpret_cast<PFN_vkCmdEndRenderingKHR>(vkGetDeviceProcAddr(device, "vkCmdEndRenderingKHR"));
vkCmdSetAlphaToCoverageEnableEXT = reinterpret_cast<PFN_vkCmdSetAlphaToCoverageEnableEXT>(vkGetDeviceProcAddr(device, "vkCmdSetAlphaToCoverageEnableEXT"));
vkCmdSetColorBlendEnableEXT = reinterpret_cast<PFN_vkCmdSetColorBlendEnableEXT>(vkGetDeviceProcAddr(device, "vkCmdSetColorBlendEnableEXT"));
vkCmdSetColorWriteMaskEXT = reinterpret_cast<PFN_vkCmdSetColorWriteMaskEXT>(vkGetDeviceProcAddr(device, "vkCmdSetColorWriteMaskEXT"));
vkCmdSetCullModeEXT = reinterpret_cast<PFN_vkCmdSetCullModeEXT>(vkGetDeviceProcAddr(device, "vkCmdSetCullModeEXT"));
vkCmdSetDepthBiasEnableEXT = reinterpret_cast<PFN_vkCmdSetDepthBiasEnableEXT>(vkGetDeviceProcAddr(device, "vkCmdSetDepthBiasEnableEXT"));
vkCmdSetDepthCompareOpEXT = reinterpret_cast<PFN_vkCmdSetDepthCompareOpEXT>(vkGetDeviceProcAddr(device, "vkCmdSetDepthCompareOpEXT"));
vkCmdSetDepthTestEnableEXT = reinterpret_cast<PFN_vkCmdSetDepthTestEnableEXT>(vkGetDeviceProcAddr(device, "vkCmdSetDepthTestEnableEXT"));
vkCmdSetDepthWriteEnableEXT = reinterpret_cast<PFN_vkCmdSetDepthWriteEnableEXT>(vkGetDeviceProcAddr(device, "vkCmdSetDepthWriteEnableEXT"));
vkCmdSetFrontFaceEXT = reinterpret_cast<PFN_vkCmdSetFrontFaceEXT>(vkGetDeviceProcAddr(device, "vkCmdSetFrontFaceEXT"));
vkCmdSetPolygonModeEXT = reinterpret_cast<PFN_vkCmdSetPolygonModeEXT>(vkGetDeviceProcAddr(device, "vkCmdSetPolygonModeEXT"));
vkCmdSetPrimitiveRestartEnableEXT = reinterpret_cast<PFN_vkCmdSetPrimitiveRestartEnableEXT>(vkGetDeviceProcAddr(device, "vkCmdSetPrimitiveRestartEnableEXT"));
vkCmdSetPrimitiveTopologyEXT = reinterpret_cast<PFN_vkCmdSetPrimitiveTopologyEXT>(vkGetDeviceProcAddr(device, "vkCmdSetPrimitiveTopologyEXT"));
vkCmdSetRasterizationSamplesEXT = reinterpret_cast<PFN_vkCmdSetRasterizationSamplesEXT>(vkGetDeviceProcAddr(device, "vkCmdSetRasterizationSamplesEXT"));
vkCmdSetRasterizerDiscardEnableEXT = reinterpret_cast<PFN_vkCmdSetRasterizerDiscardEnableEXT>(vkGetDeviceProcAddr(device, "vkCmdSetRasterizerDiscardEnableEXT"));
vkCmdSetSampleMaskEXT = reinterpret_cast<PFN_vkCmdSetSampleMaskEXT>(vkGetDeviceProcAddr(device, "vkCmdSetSampleMaskEXT"));
vkCmdSetScissorWithCountEXT = reinterpret_cast<PFN_vkCmdSetScissorWithCountEXT>(vkGetDeviceProcAddr(device, "vkCmdSetScissorWithCountEXT"));
vkCmdSetStencilTestEnableEXT = reinterpret_cast<PFN_vkCmdSetStencilTestEnableEXT>(vkGetDeviceProcAddr(device, "vkCmdSetStencilTestEnableEXT"));
vkCmdSetVertexInputEXT = reinterpret_cast<PFN_vkCmdSetVertexInputEXT>(vkGetDeviceProcAddr(device, "vkCmdSetVertexInputEXT"));
vkCmdSetViewportWithCountEXT = reinterpret_cast<PFN_vkCmdSetViewportWithCountEXT>(vkGetDeviceProcAddr(device, "vkCmdSetViewportWithCountEXT"));;
loadAssets();
prepareUniformBuffers();
setupDescriptors();
createShaderObjects();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
updateUniformBuffers();
}
};
VULKAN_EXAMPLE_MAIN()