procedural-3d-engine/deferredshadows/deferredshadows.cpp

1216 lines
42 KiB
C++
Raw Normal View History

/*
* Vulkan Example - Deferred shading with shadows from multiple light sources using geometry shader instancing
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#include <algorithm>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanBuffer.hpp"
2017-02-12 10:48:46 +01:00
#include "VulkanFrameBuffer.hpp"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Shadowmap properties
2016-07-18 21:39:21 +02:00
#if defined(__ANDROID__)
#define SHADOWMAP_DIM 1024
2016-07-18 21:39:21 +02:00
#else
#define SHADOWMAP_DIM 2048
#endif
// 16 bits of depth is enough for such a small scene
#define SHADOWMAP_FORMAT VK_FORMAT_D32_SFLOAT_S8_UINT
2016-07-18 21:39:21 +02:00
#if defined(__ANDROID__)
// Use max. screen dimension as deferred framebuffer size
#define FB_DIM std::max(width,height)
#else
#define FB_DIM 2048
2016-07-18 21:39:21 +02:00
#endif
// Must match the LIGHT_COUNT define in the shadow and deferred shaders
#define LIGHT_COUNT 3
class VulkanExample : public VulkanExampleBase
{
public:
bool debugDisplay = false;
bool enableShadows = true;
// Keep depth range as small as possible
// for better shadow map precision
float zNear = 0.1f;
float zFar = 64.0f;
float lightFOV = 100.0f;
// Depth bias (and slope) are used to avoid shadowing artefacts
float depthBiasConstant = 1.25f;
float depthBiasSlope = 1.75f;
struct {
struct {
vks::Texture2D colorMap;
vks::Texture2D normalMap;
} model;
struct {
vks::Texture2D colorMap;
vks::Texture2D normalMap;
} background;
} textures;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_COLOR,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_TANGENT,
});
struct {
vks::Model model;
vks::Model background;
vks::Model quad;
} models;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
glm::vec4 instancePos[3];
int layer;
} uboVS, uboOffscreenVS;
// This UBO stores the shadow matrices for all of the light sources
// The matrices are indexed using geometry shader instancing
// The instancePos is used to place the models using instanced draws
struct {
glm::mat4 mvp[LIGHT_COUNT];
glm::vec4 instancePos[3];
} uboShadowGS;
struct Light {
glm::vec4 position;
glm::vec4 target;
glm::vec4 color;
glm::mat4 viewMatrix;
};
struct {
glm::vec4 viewPos;
Light lights[LIGHT_COUNT];
uint32_t useShadows = 1;
} uboFragmentLights;
struct {
vks::Buffer vsFullScreen;
vks::Buffer vsOffscreen;
vks::Buffer fsLights;
vks::Buffer uboShadowGS;
} uniformBuffers;
struct {
VkPipeline deferred;
VkPipeline offscreen;
VkPipeline debug;
VkPipeline shadowpass;
} pipelines;
struct {
//todo: rename, shared with deferred and shadow pass
VkPipelineLayout deferred;
VkPipelineLayout offscreen;
} pipelineLayouts;
struct {
VkDescriptorSet model;
VkDescriptorSet background;
VkDescriptorSet shadow;
} descriptorSets;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
struct
{
// Framebuffer resources for the deferred pass
vks::Framebuffer *deferred;
// Framebuffer resources for the shadow pass
vks::Framebuffer *shadow;
} frameBuffers;
struct {
VkCommandBuffer deferred = VK_NULL_HANDLE;
} commandBuffers;
// Semaphore used to synchronize between offscreen and final scene rendering
VkSemaphore offscreenSemaphore = VK_NULL_HANDLE;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
enableTextOverlay = true;
title = "Vulkan Example - Deferred shading with shadows (2016 by Sascha Willems)";
camera.type = Camera::CameraType::firstperson;
2016-07-18 21:39:21 +02:00
#if defined(__ANDROID__)
camera.movementSpeed = 2.5f;
#else
camera.movementSpeed = 5.0f;
camera.rotationSpeed = 0.25f;
2016-07-18 21:39:21 +02:00
#endif
camera.position = { 2.15f, 0.3f, -8.75f };
camera.setRotation(glm::vec3(-0.75f, 12.5f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, zNear, zFar);
timerSpeed *= 0.25f;
paused = true;
}
~VulkanExample()
{
// Frame buffers
if (frameBuffers.deferred)
{
delete frameBuffers.deferred;
}
if (frameBuffers.shadow)
{
delete frameBuffers.shadow;
}
vkDestroyPipeline(device, pipelines.deferred, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
vkDestroyPipeline(device, pipelines.shadowpass, nullptr);
vkDestroyPipeline(device, pipelines.debug, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.deferred, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Meshes
models.model.destroy();
models.background.destroy();
models.quad.destroy();
// Uniform buffers
uniformBuffers.vsOffscreen.destroy();
uniformBuffers.vsFullScreen.destroy();
uniformBuffers.fsLights.destroy();
uniformBuffers.uboShadowGS.destroy();
vkFreeCommandBuffers(device, cmdPool, 1, &commandBuffers.deferred);
// Textures
textures.model.colorMap.destroy();
textures.model.normalMap.destroy();
textures.background.colorMap.destroy();
textures.background.normalMap.destroy();
vkDestroySemaphore(device, offscreenSemaphore, nullptr);
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Geometry shader support is required for writing to multiple shadow map layers in one single pass
if (deviceFeatures.geometryShader) {
enabledFeatures.geometryShader = VK_TRUE;
}
else {
vks::tools::exitFatal("Selected GPU does not support geometry shaders!", "Feature not supported");
}
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
// Enable texture compression
if (deviceFeatures.textureCompressionBC) {
enabledFeatures.textureCompressionBC = VK_TRUE;
}
else if (deviceFeatures.textureCompressionASTC_LDR) {
enabledFeatures.textureCompressionASTC_LDR = VK_TRUE;
}
else if (deviceFeatures.textureCompressionETC2) {
enabledFeatures.textureCompressionETC2 = VK_TRUE;
}
}
// Prepare a layered shadow map with each layer containing depth from a light's point of view
// The shadow mapping pass uses geometry shader instancing to output the scene from the different
// light sources' point of view to the layers of the depth attachment in one single pass
void shadowSetup()
{
frameBuffers.shadow = new vks::Framebuffer(vulkanDevice);
frameBuffers.shadow->width = SHADOWMAP_DIM;
frameBuffers.shadow->height = SHADOWMAP_DIM;
// Create a layered depth attachment for rendering the depth maps from the lights' point of view
// Each layer corresponds to one of the lights
// The actual output to the separate layers is done in the geometry shader using shader instancing
// We will pass the matrices of the lights to the GS that selects the layer by the current invocation
vks::AttachmentCreateInfo attachmentInfo = {};
attachmentInfo.format = SHADOWMAP_FORMAT;
attachmentInfo.width = SHADOWMAP_DIM;
attachmentInfo.height = SHADOWMAP_DIM;
attachmentInfo.layerCount = LIGHT_COUNT;
attachmentInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
frameBuffers.shadow->addAttachment(attachmentInfo);
// Create sampler to sample from to depth attachment
// Used to sample in the fragment shader for shadowed rendering
VK_CHECK_RESULT(frameBuffers.shadow->createSampler(VK_FILTER_LINEAR, VK_FILTER_LINEAR, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE));
// Create default renderpass for the framebuffer
VK_CHECK_RESULT(frameBuffers.shadow->createRenderPass());
}
// Prepare the framebuffer for offscreen rendering with multiple attachments used as render targets inside the fragment shaders
void deferredSetup()
{
frameBuffers.deferred = new vks::Framebuffer(vulkanDevice);
frameBuffers.deferred->width = FB_DIM;
frameBuffers.deferred->height = FB_DIM;
// Four attachments (3 color, 1 depth)
vks::AttachmentCreateInfo attachmentInfo = {};
attachmentInfo.width = FB_DIM;
attachmentInfo.height = FB_DIM;
attachmentInfo.layerCount = 1;
attachmentInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
// Color attachments
// Attachment 0: (World space) Positions
attachmentInfo.format = VK_FORMAT_R16G16B16A16_SFLOAT;
frameBuffers.deferred->addAttachment(attachmentInfo);
// Attachment 1: (World space) Normals
attachmentInfo.format = VK_FORMAT_R16G16B16A16_SFLOAT;
frameBuffers.deferred->addAttachment(attachmentInfo);
// Attachment 2: Albedo (color)
attachmentInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
frameBuffers.deferred->addAttachment(attachmentInfo);
// Depth attachment
// Find a suitable depth format
VkFormat attDepthFormat;
VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &attDepthFormat);
assert(validDepthFormat);
attachmentInfo.format = attDepthFormat;
attachmentInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
frameBuffers.deferred->addAttachment(attachmentInfo);
// Create sampler to sample from the color attachments
2016-09-26 22:04:54 +02:00
VK_CHECK_RESULT(frameBuffers.deferred->createSampler(VK_FILTER_NEAREST, VK_FILTER_NEAREST, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE));
// Create default renderpass for the framebuffer
VK_CHECK_RESULT(frameBuffers.deferred->createRenderPass());
}
// Put render commands for the scene into the given command buffer
void renderScene(VkCommandBuffer cmdBuffer, bool shadow)
{
VkDeviceSize offsets[1] = { 0 };
// Background
vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, shadow ? &descriptorSets.shadow : &descriptorSets.background, 0, NULL);
vkCmdBindVertexBuffers(cmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &models.background.vertices.buffer, offsets);
vkCmdBindIndexBuffer(cmdBuffer, models.background.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(cmdBuffer, models.background.indexCount, 1, 0, 0, 0);
// Objects
vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, shadow ? &descriptorSets.shadow : &descriptorSets.model, 0, NULL);
vkCmdBindVertexBuffers(cmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &models.model.vertices.buffer, offsets);
vkCmdBindIndexBuffer(cmdBuffer, models.model.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(cmdBuffer, models.model.indexCount, 3, 0, 0, 0);
}
// Build a secondary command buffer for rendering the scene values to the offscreen frame buffer attachments
void buildDeferredCommandBuffer()
{
if (commandBuffers.deferred == VK_NULL_HANDLE)
{
commandBuffers.deferred = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false);
}
// Create a semaphore used to synchronize offscreen rendering and usage
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenSemaphore));
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
std::array<VkClearValue, 4> clearValues = {};
VkViewport viewport;
VkRect2D scissor;
// First pass: Shadow map generation
// -------------------------------------------------------------------------------------------------------
clearValues[0].depthStencil = { 1.0f, 0 };
renderPassBeginInfo.renderPass = frameBuffers.shadow->renderPass;
renderPassBeginInfo.framebuffer = frameBuffers.shadow->framebuffer;
renderPassBeginInfo.renderArea.extent.width = frameBuffers.shadow->width;
renderPassBeginInfo.renderArea.extent.height = frameBuffers.shadow->height;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.pClearValues = clearValues.data();
VK_CHECK_RESULT(vkBeginCommandBuffer(commandBuffers.deferred, &cmdBufInfo));
viewport = vks::initializers::viewport((float)frameBuffers.shadow->width, (float)frameBuffers.shadow->height, 0.0f, 1.0f);
vkCmdSetViewport(commandBuffers.deferred, 0, 1, &viewport);
scissor = vks::initializers::rect2D(frameBuffers.shadow->width, frameBuffers.shadow->height, 0, 0);
vkCmdSetScissor(commandBuffers.deferred, 0, 1, &scissor);
// Set depth bias (aka "Polygon offset")
vkCmdSetDepthBias(
commandBuffers.deferred,
depthBiasConstant,
0.0f,
depthBiasSlope);
vkCmdBeginRenderPass(commandBuffers.deferred, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(commandBuffers.deferred, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shadowpass);
renderScene(commandBuffers.deferred, true);
vkCmdEndRenderPass(commandBuffers.deferred);
// Second pass: Deferred calculations
// -------------------------------------------------------------------------------------------------------
// Clear values for all attachments written in the fragment sahder
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[2].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[3].depthStencil = { 1.0f, 0 };
renderPassBeginInfo.renderPass = frameBuffers.deferred->renderPass;
renderPassBeginInfo.framebuffer = frameBuffers.deferred->framebuffer;
renderPassBeginInfo.renderArea.extent.width = frameBuffers.deferred->width;
renderPassBeginInfo.renderArea.extent.height = frameBuffers.deferred->height;
renderPassBeginInfo.clearValueCount = static_cast<uint32_t>(clearValues.size());
renderPassBeginInfo.pClearValues = clearValues.data();
vkCmdBeginRenderPass(commandBuffers.deferred, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
viewport = vks::initializers::viewport((float)frameBuffers.deferred->width, (float)frameBuffers.deferred->height, 0.0f, 1.0f);
vkCmdSetViewport(commandBuffers.deferred, 0, 1, &viewport);
scissor = vks::initializers::rect2D(frameBuffers.deferred->width, frameBuffers.deferred->height, 0, 0);
vkCmdSetScissor(commandBuffers.deferred, 0, 1, &scissor);
vkCmdBindPipeline(commandBuffers.deferred, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
renderScene(commandBuffers.deferred, false);
vkCmdEndRenderPass(commandBuffers.deferred);
VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffers.deferred));
}
void loadAssets()
{
models.model.loadFromFile(getAssetPath() + "models/armor/armor.dae", vertexLayout, 1.0f, vulkanDevice, queue);
vks::ModelCreateInfo modelCreateInfo;
modelCreateInfo.scale = glm::vec3(15.0f);
modelCreateInfo.uvscale = glm::vec2(1.0f, 1.5f);
modelCreateInfo.center = glm::vec3(0.0f, 2.3f, 0.0f);
models.background.loadFromFile(getAssetPath() + "models/openbox.dae", vertexLayout, &modelCreateInfo, vulkanDevice, queue);
// Textures
std::string texFormatSuffix;
VkFormat texFormat;
// Get supported compressed texture format
if (vulkanDevice->features.textureCompressionBC) {
texFormatSuffix = "_bc3_unorm";
texFormat = VK_FORMAT_BC3_UNORM_BLOCK;
}
else if (vulkanDevice->features.textureCompressionASTC_LDR) {
texFormatSuffix = "_astc_8x8_unorm";
texFormat = VK_FORMAT_ASTC_8x8_UNORM_BLOCK;
}
else if (vulkanDevice->features.textureCompressionETC2) {
texFormatSuffix = "_etc2_unorm";
texFormat = VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK;
}
else {
vks::tools::exitFatal("Device does not support any compressed texture format!", "Error");
}
textures.model.colorMap.loadFromFile(getAssetPath() + "models/armor/color" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
textures.model.normalMap.loadFromFile(getAssetPath() + "models/armor/normal" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
textures.background.colorMap.loadFromFile(getAssetPath() + "textures/stonefloor02_color" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
textures.background.normalMap.loadFromFile(getAssetPath() + "textures/stonefloor02_normal" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = VulkanExampleBase::frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.deferred, 0, 1, &descriptorSet, 0, NULL);
// Final composition as full screen quad
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.deferred);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.quad.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.quad.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], 6, 1, 0, 0, 0);
if (debugDisplay)
{
// Visualize depth maps
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug);
vkCmdDrawIndexed(drawCmdBuffers[i], 6, LIGHT_COUNT, 0, 0, 0);
}
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
/** @brief Create a single quad for fullscreen deferred pass and debug passes (debug pass uses instancing for light visualization) */
void generateQuads()
{
struct Vertex {
float pos[3];
float uv[2];
float col[3];
float normal[3];
float tangent[3];
};
std::vector<Vertex> vertexBuffer;
vertexBuffer.push_back({ { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f },{ 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 0.0f } });
vertexBuffer.push_back({ { 0.0f, 1.0f, 0.0f },{ 0.0f, 1.0f },{ 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 0.0f } });
vertexBuffer.push_back({ { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f },{ 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 0.0f } });
vertexBuffer.push_back({ { 1.0f, 0.0f, 0.0f },{ 1.0f, 0.0f },{ 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 0.0f } });
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
vertexBuffer.size() * sizeof(Vertex),
&models.quad.vertices.buffer,
&models.quad.vertices.memory,
vertexBuffer.data()));
// Setup indices
std::vector<uint32_t> indexBuffer = { 0,1,2, 2,3,0 };
for (uint32_t i = 0; i < 3; ++i)
{
uint32_t indices[6] = { 0,1,2, 2,3,0 };
for (auto index : indices)
{
indexBuffer.push_back(i * 4 + index);
}
}
models.quad.indexCount = static_cast<uint32_t>(indexBuffer.size());
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
indexBuffer.size() * sizeof(uint32_t),
&models.quad.indices.buffer,
&models.quad.indices.memory,
indexBuffer.data()));
models.quad.device = device;
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vks::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vertexLayout.stride(),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(5);
// Location 0: Position
vertices.attributeDescriptions[0] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1: Texture coordinates
vertices.attributeDescriptions[1] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Location 2: Color
vertices.attributeDescriptions[2] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 5);
// Location 3: Normal
vertices.attributeDescriptions[3] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
// Location 4: Tangent
vertices.attributeDescriptions[4] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
4,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 11);
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 12), //todo: separate set layouts
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 16)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
4);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
// todo: split for clarity, esp. with GS instancing
// Deferred shading layout (Shared with debug display)
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0: Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_GEOMETRY_BIT,
0),
// Binding 1: Position texture
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// Binding 2: Normals texture
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
// Binding 3: Albedo texture
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
3),
// Binding 4: Fragment shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
4),
// Binding 5: Shadow map
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
5),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.deferred));
// Offscreen (scene) rendering pipeline layout
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen));
}
void setupDescriptorSet()
{
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
// Textured quad descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
// Image descriptors for the offscreen color attachments
VkDescriptorImageInfo texDescriptorPosition =
vks::initializers::descriptorImageInfo(
frameBuffers.deferred->sampler,
frameBuffers.deferred->attachments[0].view,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VkDescriptorImageInfo texDescriptorNormal =
vks::initializers::descriptorImageInfo(
frameBuffers.deferred->sampler,
frameBuffers.deferred->attachments[1].view,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VkDescriptorImageInfo texDescriptorAlbedo =
vks::initializers::descriptorImageInfo(
frameBuffers.deferred->sampler,
frameBuffers.deferred->attachments[2].view,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VkDescriptorImageInfo texDescriptorShadowMap =
vks::initializers::descriptorImageInfo(
frameBuffers.shadow->sampler,
frameBuffers.shadow->attachments[0].view,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL);
writeDescriptorSets = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.vsFullScreen.descriptor),
// Binding 1: World space position texture
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorPosition),
// Binding 2: World space normals texture
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&texDescriptorNormal),
// Binding 3: Albedo texture
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
3,
&texDescriptorAlbedo),
// Binding 4: Fragment shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
4,
&uniformBuffers.fsLights.descriptor),
// Binding 5: Shadow map
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
5,
&texDescriptorShadowMap),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Offscreen (scene)
// Model
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.model));
writeDescriptorSets =
{
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSets.model,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.vsOffscreen.descriptor),
// Binding 1: Color map
vks::initializers::writeDescriptorSet(
descriptorSets.model,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&textures.model.colorMap.descriptor),
// Binding 2: Normal map
vks::initializers::writeDescriptorSet(
descriptorSets.model,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&textures.model.normalMap.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Background
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.background));
writeDescriptorSets =
{
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSets.background,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.vsOffscreen.descriptor),
// Binding 1: Color map
vks::initializers::writeDescriptorSet(
descriptorSets.background,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&textures.background.colorMap.descriptor),
// Binding 2: Normal map
vks::initializers::writeDescriptorSet(
descriptorSets.background,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&textures.background.normalMap.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Shadow mapping
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.shadow));
writeDescriptorSets =
{
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSets.shadow,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBuffers.uboShadowGS.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
// Final fullscreen pass pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/deferredshadows/deferred.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/deferredshadows/deferred.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
pipelineLayouts.deferred,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.deferred));
// Debug display pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/deferredshadows/debug.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/deferredshadows/debug.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.debug));
// Offscreen pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/deferredshadows/mrt.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/deferredshadows/mrt.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Separate render pass
pipelineCreateInfo.renderPass = frameBuffers.deferred->renderPass;
// Separate layout
pipelineCreateInfo.layout = pipelineLayouts.offscreen;
// Blend attachment states required for all color attachments
// This is important, as color write mask will otherwise be 0x0 and you
// won't see anything rendered to the attachment
std::array<VkPipelineColorBlendAttachmentState, 3> blendAttachmentStates =
{
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE)
};
colorBlendState.attachmentCount = static_cast<uint32_t>(blendAttachmentStates.size());
colorBlendState.pAttachments = blendAttachmentStates.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen));
// Shadow mapping pipeline
// The shadow mapping pipeline uses geometry shader instancing (invocations layout modifier) to output
// shadow maps for multiple lights sources into the different shadow map layers in one single render pass
std::array<VkPipelineShaderStageCreateInfo, 3> shadowStages;
shadowStages[0] = loadShader(getAssetPath() + "shaders/deferredshadows/shadow.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shadowStages[1] = loadShader(getAssetPath() + "shaders/deferredshadows/shadow.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
shadowStages[2] = loadShader(getAssetPath() + "shaders/deferredshadows/shadow.geom.spv", VK_SHADER_STAGE_GEOMETRY_BIT);
pipelineCreateInfo.pStages = shadowStages.data();
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shadowStages.size());
// Shadow pass doesn't use any color attachments
colorBlendState.attachmentCount = 0;
colorBlendState.pAttachments = nullptr;
// Cull front faces
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
// Enable depth bias
rasterizationState.depthBiasEnable = VK_TRUE;
// Add depth bias to dynamic state, so we can change it at runtime
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_DEPTH_BIAS);
dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
// Reset blend attachment state
pipelineCreateInfo.renderPass = frameBuffers.shadow->renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.shadowpass));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Fullscreen vertex shader
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.vsFullScreen,
sizeof(uboVS)));
// Deferred vertex shader
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.vsOffscreen,
sizeof(uboOffscreenVS)));
// Deferred fragment shader
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.fsLights,
sizeof(uboFragmentLights)));
// Shadow map vertex shader (matrices from shadow's pov)
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.uboShadowGS,
sizeof(uboShadowGS)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.vsFullScreen.map());
VK_CHECK_RESULT(uniformBuffers.vsOffscreen.map());
VK_CHECK_RESULT(uniformBuffers.fsLights.map());
VK_CHECK_RESULT(uniformBuffers.uboShadowGS.map());
// Init some values
uboOffscreenVS.instancePos[0] = glm::vec4(0.0f);
uboOffscreenVS.instancePos[1] = glm::vec4(-4.0f, 0.0, -4.0f, 0.0f);
uboOffscreenVS.instancePos[2] = glm::vec4(4.0f, 0.0, -4.0f, 0.0f);
uboOffscreenVS.instancePos[1] = glm::vec4(-7.0f, 0.0, -4.0f, 0.0f);
uboOffscreenVS.instancePos[2] = glm::vec4(4.0f, 0.0, -6.0f, 0.0f);
// Update
updateUniformBuffersScreen();
updateUniformBufferDeferredMatrices();
updateUniformBufferDeferredLights();
}
void updateUniformBuffersScreen()
{
uboVS.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f);
uboVS.model = glm::mat4();
memcpy(uniformBuffers.vsFullScreen.mapped, &uboVS, sizeof(uboVS));
}
void updateUniformBufferDeferredMatrices()
{
uboOffscreenVS.projection = camera.matrices.perspective;
uboOffscreenVS.view = camera.matrices.view;
uboOffscreenVS.model = glm::mat4();
memcpy(uniformBuffers.vsOffscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS));
}
Light initLight(glm::vec3 pos, glm::vec3 target, glm::vec3 color)
{
Light light;
light.position = glm::vec4(pos, 1.0f);
light.target = glm::vec4(target, 0.0f);
light.color = glm::vec4(color, 0.0f);
return light;
}
void initLights()
{
uboFragmentLights.lights[0] = initLight(glm::vec3(-14.0f, -0.5f, 15.0f), glm::vec3(-2.0f, 0.0f, 0.0f), glm::vec3(1.0f, 0.5f, 0.5f));
uboFragmentLights.lights[1] = initLight(glm::vec3(14.0f, -4.0f, 12.0f), glm::vec3(2.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f));
uboFragmentLights.lights[2] = initLight(glm::vec3(0.0f, -10.0f, 4.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(1.0f, 1.0f, 1.0f));
}
// Update fragment shader light position uniform block
void updateUniformBufferDeferredLights()
{
// Animate
//if (!paused)
{
uboFragmentLights.lights[0].position.x = -14.0f + std::abs(sin(glm::radians(timer * 360.0f)) * 20.0f);
uboFragmentLights.lights[0].position.z = 15.0f + cos(glm::radians(timer *360.0f)) * 1.0f;
uboFragmentLights.lights[1].position.x = 14.0f - std::abs(sin(glm::radians(timer * 360.0f)) * 2.5f);
uboFragmentLights.lights[1].position.z = 13.0f + cos(glm::radians(timer *360.0f)) * 4.0f;
uboFragmentLights.lights[2].position.x = 0.0f + sin(glm::radians(timer *360.0f)) * 4.0f;
uboFragmentLights.lights[2].position.z = 4.0f + cos(glm::radians(timer *360.0f)) * 2.0f;
}
for (uint32_t i = 0; i < LIGHT_COUNT; i++)
{
// mvp from light's pov (for shadows)
glm::mat4 shadowProj = glm::perspective(glm::radians(lightFOV), 1.0f, zNear, zFar);
glm::mat4 shadowView = glm::lookAt(glm::vec3(uboFragmentLights.lights[i].position), glm::vec3(uboFragmentLights.lights[i].target), glm::vec3(0.0f, 1.0f, 0.0f));
glm::mat4 shadowModel = glm::mat4();
uboShadowGS.mvp[i] = shadowProj * shadowView * shadowModel;
uboFragmentLights.lights[i].viewMatrix = uboShadowGS.mvp[i];
}
memcpy(uboShadowGS.instancePos, uboOffscreenVS.instancePos, sizeof(uboOffscreenVS.instancePos));
memcpy(uniformBuffers.uboShadowGS.mapped, &uboShadowGS, sizeof(uboShadowGS));
uboFragmentLights.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f, 1.0f, -1.0f, 1.0f);;
memcpy(uniformBuffers.fsLights.mapped, &uboFragmentLights, sizeof(uboFragmentLights));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Offscreen rendering
// Wait for swap chain presentation to finish
submitInfo.pWaitSemaphores = &semaphores.presentComplete;
// Signal ready with offscreen semaphore
submitInfo.pSignalSemaphores = &offscreenSemaphore;
// Submit work
// Shadow map pass
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffers.deferred;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
// Scene rendering
// Wait for offscreen semaphore
submitInfo.pWaitSemaphores = &offscreenSemaphore;
// Signal ready with render complete semaphpre
submitInfo.pSignalSemaphores = &semaphores.renderComplete;
// Submit work
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
generateQuads();
setupVertexDescriptions();
deferredSetup();
shadowSetup();
initLights();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
buildDeferredCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
updateUniformBufferDeferredLights();
}
virtual void viewChanged()
{
updateUniformBufferDeferredMatrices();
}
void toggleDebugDisplay()
{
debugDisplay = !debugDisplay;
reBuildCommandBuffers();
updateUniformBuffersScreen();
}
void toggleShadows()
{
uboFragmentLights.useShadows = !uboFragmentLights.useShadows;
updateUniformBufferDeferredLights();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case KEY_F1:
case GAMEPAD_BUTTON_A:
toggleDebugDisplay();
updateTextOverlay();
break;
case KEY_F2:
2016-07-18 21:39:21 +02:00
case GAMEPAD_BUTTON_X:
toggleShadows();
updateTextOverlay();
break;
}
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
#if defined(__ANDROID__)
textOverlay->addText("Press \"Button A\" to toggle debug view", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
2016-07-18 21:39:21 +02:00
textOverlay->addText("Press \"Button X\" to toggle shadows", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
#else
textOverlay->addText("Press \"F1\" to toggle debug view", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Press \"F2\" to toggle shadows", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
#endif
}
};
VULKAN_EXAMPLE_MAIN()