procedural-3d-engine/indirectdraw/indirectdraw.cpp

674 lines
22 KiB
C++
Raw Normal View History

/*
* Vulkan Example - Indirect drawing
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*
* Summary:
2016-08-01 21:43:47 +02:00
* Use a device local buffer that stores draw commands for instanced rendering of different meshes stored
* in the same buffer.
*
* Indirect drawing offloads draw command generation and offers the ability to update them on the GPU
* without the CPU having to touch the buffer again, also reducing the number of drawcalls.
*
* The example shows how to setup and fill such a buffer on the CPU side, stages it to the device and
2016-08-01 21:43:47 +02:00
* shows how to render it using only one draw command.
*
* See readme.md for details
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <time.h>
#include <vector>
#include <random>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "vulkanbuffer.hpp"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define INSTANCE_BUFFER_BIND_ID 1
#define ENABLE_VALIDATION false
// Number of instances per object
#if defined(__ANDROID__)
#define OBJECT_INSTANCE_COUNT 1024
// Circular range of plant distribution
#define PLANT_RADIUS 20.0f
#else
#define OBJECT_INSTANCE_COUNT 2048
2016-08-01 21:43:47 +02:00
// Circular range of plant distribution
#define PLANT_RADIUS 25.0f
#endif
class VulkanExample : public VulkanExampleBase
{
public:
struct {
vks::Texture2DArray plants;
vks::Texture2D ground;
} textures;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_COLOR,
});
struct {
vks::Model plants;
vks::Model ground;
vks::Model skysphere;
} models;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
// Per-instance data block
struct InstanceData {
glm::vec3 pos;
glm::vec3 rot;
float scale;
uint32_t texIndex;
};
// Contains the instanced data
vk::Buffer instanceBuffer;
// Contains the indirect drawing commands
vk::Buffer indirectCommandsBuffer;
uint32_t indirectDrawCount;
struct {
glm::mat4 projection;
glm::mat4 view;
} uboVS;
struct {
vk::Buffer scene;
} uniformData;
struct {
2016-08-01 21:43:47 +02:00
VkPipeline plants;
VkPipeline ground;
VkPipeline skysphere;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
2016-08-01 21:43:47 +02:00
VkSampler samplerRepeat;
uint32_t objectCount = 0;
// Store the indirect draw commands containing index offsets and instance count per object
std::vector<VkDrawIndexedIndirectCommand> indirectCommands;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
enableTextOverlay = true;
title = "Vulkan Example - Indirect rendering";
2016-08-01 21:43:47 +02:00
camera.type = Camera::CameraType::firstperson;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(-12.0f, 159.0f, 0.0f));
camera.setTranslation(glm::vec3(0.4f, 1.25f, 0.0f));
camera.movementSpeed = 5.0f;
}
~VulkanExample()
{
2016-08-01 21:43:47 +02:00
vkDestroyPipeline(device, pipelines.plants, nullptr);
vkDestroyPipeline(device, pipelines.ground, nullptr);
vkDestroyPipeline(device, pipelines.skysphere, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
models.plants.destroy();
models.ground.destroy();
models.skysphere.destroy();
textures.plants.destroy();
textures.ground.destroy();
instanceBuffer.destroy();
indirectCommandsBuffer.destroy();
uniformData.scene.destroy();
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
2016-08-01 21:43:47 +02:00
clearValues[0].color = { { 0.18f, 0.27f, 0.5f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
2016-08-01 21:43:47 +02:00
VkDeviceSize offsets[1] = { 0 };
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
2016-08-01 21:43:47 +02:00
// Plants
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.plants);
// Binding point 0 : Mesh vertex buffer
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.plants.vertices.buffer, offsets);
// Binding point 1 : Instance data buffer
vkCmdBindVertexBuffers(drawCmdBuffers[i], INSTANCE_BUFFER_BIND_ID, 1, &instanceBuffer.buffer, offsets);
2016-08-01 21:43:47 +02:00
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.plants.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
// If the multi draw feature is supported:
// One draw call for an arbitrary number of ojects
// Index offsets and instance count are taken from the indirect buffer
if (vulkanDevice->features.multiDrawIndirect)
{
vkCmdDrawIndexedIndirect(drawCmdBuffers[i], indirectCommandsBuffer.buffer, 0, indirectDrawCount, sizeof(VkDrawIndexedIndirectCommand));
}
else
{
// If multi draw is not available, we must issue separate draw commands
for (auto j = 0; j < indirectCommands.size(); j++)
{
vkCmdDrawIndexedIndirect(drawCmdBuffers[i], indirectCommandsBuffer.buffer, j * sizeof(VkDrawIndexedIndirectCommand), 1, sizeof(VkDrawIndexedIndirectCommand));
}
}
2016-08-01 21:43:47 +02:00
// Ground
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.ground);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.ground.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.ground.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], models.ground.indexCount, 1, 0, 0, 0);
2016-08-01 21:43:47 +02:00
// Skysphere
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skysphere);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.skysphere.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.skysphere.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], models.skysphere.indexCount, 1, 0, 0, 0);
2016-08-01 21:43:47 +02:00
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
2016-08-01 21:43:47 +02:00
void loadAssets()
{
models.plants.loadFromFile(getAssetPath() + "models/plants.dae", vertexLayout, 0.0025f, vulkanDevice, queue);
models.ground.loadFromFile(getAssetPath() + "models/plane_circle.dae", vertexLayout, PLANT_RADIUS + 1.0f, vulkanDevice, queue);
models.skysphere.loadFromFile(getAssetPath() + "models/skysphere.dae", vertexLayout, 512.0f / 10.0f, vulkanDevice, queue);
textures.plants.loadFromFile(getAssetPath() + "textures/texturearray_plants_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, vulkanDevice, queue);
textures.ground.loadFromFile(getAssetPath() + "textures/ground_dry_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, vulkanDevice, queue);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(2);
// Mesh vertex buffer (description) at binding point 0
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vertexLayout.stride(),
// Input rate for the data passed to shader
// Step for each vertex rendered
VK_VERTEX_INPUT_RATE_VERTEX);
vertices.bindingDescriptions[1] =
vkTools::initializers::vertexInputBindingDescription(
INSTANCE_BUFFER_BIND_ID,
sizeof(InstanceData),
// Input rate for the data passed to shader
// Step for each instance rendered
VK_VERTEX_INPUT_RATE_INSTANCE);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.clear();
// Per-Vertex attributes
// Location 0 : Position
vertices.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0)
);
// Location 1 : Normal
vertices.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3)
);
// Location 2 : Texture coordinates
vertices.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6)
);
// Location 3 : Color
vertices.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8)
);
// Instanced attributes
// Location 4: Position
vertices.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
INSTANCE_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(InstanceData, pos))
);
// Location 5: Rotation
vertices.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
INSTANCE_BUFFER_BIND_ID, 5, VK_FORMAT_R32G32B32_SFLOAT, offsetof(InstanceData, rot))
);
// Location 6: Scale
vertices.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
2016-08-01 21:43:47 +02:00
INSTANCE_BUFFER_BIND_ID, 6, VK_FORMAT_R32_SFLOAT, offsetof(InstanceData, scale))
);
// Location 7: Texture array layer index
vertices.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
2016-08-01 21:43:47 +02:00
INSTANCE_BUFFER_BIND_ID, 7, VK_FORMAT_R32_SINT, offsetof(InstanceData, texIndex))
);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
2016-08-01 21:43:47 +02:00
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
2016-08-01 21:43:47 +02:00
// Binding 0: Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
2016-08-01 21:43:47 +02:00
// Binding 1: Fragment shader combined sampler (plants texture array)
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
2016-08-01 21:43:47 +02:00
// Binding 1: Fragment shader combined sampler (ground texture)
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
2016-08-01 21:43:47 +02:00
// Binding 0: Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.scene.descriptor),
2016-08-01 21:43:47 +02:00
// Binding 1: Plants texture array combined
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&textures.plants.descriptor),
2016-08-01 21:43:47 +02:00
// Binding 2: Ground texture combined
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&textures.ground.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
2016-08-01 21:43:47 +02:00
VK_CULL_MODE_NONE,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
2016-08-01 21:43:47 +02:00
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
2016-08-01 21:43:47 +02:00
// Indirect (and instanced) pipeline for the plants
shaderStages[0] = loadShader(getAssetPath() + "shaders/indirectdraw/indirectdraw.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/indirectdraw/indirectdraw.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.plants));
// Ground
shaderStages[0] = loadShader(getAssetPath() + "shaders/indirectdraw/ground.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/indirectdraw/ground.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
//rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
2016-08-01 21:43:47 +02:00
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.ground));
// Skysphere
shaderStages[0] = loadShader(getAssetPath() + "shaders/indirectdraw/skysphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/indirectdraw/skysphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
//rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
2016-08-01 21:43:47 +02:00
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skysphere));
}
// Prepare (and stage) a buffer containing the indirect draw commands
void prepareIndirectData()
{
2016-08-01 21:43:47 +02:00
indirectCommands.clear();
2016-08-01 21:43:47 +02:00
// Create on indirect command for each mesh in the scene
uint32_t m = 0;
for (auto& modelPart : models.plants.parts)
2016-08-01 21:43:47 +02:00
{
VkDrawIndexedIndirectCommand indirectCmd{};
indirectCmd.instanceCount = OBJECT_INSTANCE_COUNT;
indirectCmd.firstInstance = m * OBJECT_INSTANCE_COUNT;
indirectCmd.firstIndex = modelPart.indexBase;
indirectCmd.indexCount = modelPart.indexCount;
2016-08-01 21:43:47 +02:00
indirectCommands.push_back(indirectCmd);
m++;
}
indirectDrawCount = static_cast<uint32_t>(indirectCommands.size());
objectCount = 0;
for (auto indirectCmd : indirectCommands)
{
objectCount += indirectCmd.instanceCount;
}
vk::Buffer stagingBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
indirectCommands.size() * sizeof(VkDrawIndexedIndirectCommand),
indirectCommands.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&indirectCommandsBuffer,
stagingBuffer.size));
2016-08-01 21:43:47 +02:00
vulkanDevice->copyBuffer(&stagingBuffer, &indirectCommandsBuffer, queue);
stagingBuffer.destroy();
}
// Prepare (and stage) a buffer containing instanced data for the mesh draws
void prepareInstanceData()
{
std::vector<InstanceData> instanceData;
instanceData.resize(objectCount);
std::mt19937 rndGenerator((unsigned)time(NULL));
std::uniform_real_distribution<float> uniformDist(0.0f, 1.0f);
for (uint32_t i = 0; i < objectCount; i++)
{
instanceData[i].rot = glm::vec3(0.0f, float(M_PI) * uniformDist(rndGenerator), 0.0f);
float theta = 2 * float(M_PI) * uniformDist(rndGenerator);
float phi = acos(1 - 2 * uniformDist(rndGenerator));
2016-08-01 21:43:47 +02:00
instanceData[i].pos = glm::vec3(sin(phi) * cos(theta), 0.0f, cos(phi)) * PLANT_RADIUS;
instanceData[i].scale = 1.0f + uniformDist(rndGenerator) * 2.0f;
2016-08-01 21:43:47 +02:00
instanceData[i].texIndex = i / OBJECT_INSTANCE_COUNT;
}
vk::Buffer stagingBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
instanceData.size() * sizeof(InstanceData),
instanceData.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&instanceBuffer,
stagingBuffer.size));
2016-08-01 21:43:47 +02:00
vulkanDevice->copyBuffer(&stagingBuffer, &instanceBuffer, queue);
stagingBuffer.destroy();
}
void prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformData.scene,
sizeof(uboVS)));
VK_CHECK_RESULT(uniformData.scene.map());
updateUniformBuffer(true);
}
void updateUniformBuffer(bool viewChanged)
{
if (viewChanged)
{
2016-08-01 21:43:47 +02:00
uboVS.projection = camera.matrices.perspective;
uboVS.view = camera.matrices.view;
}
memcpy(uniformData.scene.mapped, &uboVS, sizeof(uboVS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
2016-08-01 21:43:47 +02:00
loadAssets();
prepareIndirectData();
prepareInstanceData();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
{
return;
}
draw();
}
virtual void viewChanged()
{
updateUniformBuffer(true);
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
2016-08-01 21:43:47 +02:00
textOverlay->addText(std::to_string(objectCount) + " objects", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
if (!vulkanDevice->features.multiDrawIndirect)
{
textOverlay->addText("multiDrawIndirect not supported", 5.0f, 105.0f, VulkanTextOverlay::alignLeft);
}
}
};
2016-08-01 21:43:47 +02:00
VULKAN_EXAMPLE_MAIN()