Started working on sample for VK_EXT_host_image_copy
First working version Work-in-progress
This commit is contained in:
parent
196e6a4c6b
commit
122793da95
2 changed files with 524 additions and 0 deletions
523
examples/hostimagecopy/hostimagecopy.cpp
Normal file
523
examples/hostimagecopy/hostimagecopy.cpp
Normal file
|
|
@ -0,0 +1,523 @@
|
|||
/*
|
||||
* Vulkan Example - Host image copy using VK_EXT_host_image_copy
|
||||
*
|
||||
* This sample shows how to use host image copies to directly upload an image to the devic without having to use staging
|
||||
*
|
||||
* Work-in-progress
|
||||
*
|
||||
* Copyright (C) 2024 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
#include "vulkanexamplebase.h"
|
||||
#include <ktx.h>
|
||||
#include <ktxvulkan.h>
|
||||
|
||||
class VulkanExample : public VulkanExampleBase
|
||||
{
|
||||
public:
|
||||
// Pointers for functions added by the host image copy extension;
|
||||
PFN_vkCopyMemoryToImageEXT vkCopyMemoryToImageEXT{ nullptr };
|
||||
PFN_vkTransitionImageLayoutEXT vkTransitionImageLayoutEXT{ nullptr };
|
||||
|
||||
VkPhysicalDeviceHostImageCopyFeaturesEXT enabledPhysicalDeviceHostImageCopyFeaturesEXT{};
|
||||
|
||||
// Vertex layout for this example
|
||||
struct Vertex {
|
||||
float pos[3];
|
||||
float uv[2];
|
||||
float normal[3];
|
||||
};
|
||||
|
||||
// Contains all Vulkan objects that are required to store and use a texture
|
||||
// Note that this repository contains a texture class (VulkanTexture.hpp) that encapsulates texture loading functionality in a class that is used in subsequent demos
|
||||
struct Texture {
|
||||
VkSampler sampler{ VK_NULL_HANDLE };
|
||||
VkImage image{ VK_NULL_HANDLE };
|
||||
VkDeviceMemory deviceMemory{ VK_NULL_HANDLE };
|
||||
VkImageView view{ VK_NULL_HANDLE };
|
||||
uint32_t width{ 0 };
|
||||
uint32_t height{ 0 };
|
||||
uint32_t mipLevels{ 0 };
|
||||
} texture;
|
||||
|
||||
vks::Buffer vertexBuffer;
|
||||
vks::Buffer indexBuffer;
|
||||
uint32_t indexCount{ 0 };
|
||||
|
||||
struct UniformData {
|
||||
glm::mat4 projection;
|
||||
glm::mat4 modelView;
|
||||
glm::vec4 viewPos;
|
||||
// This is used to change the bias for the level-of-detail (mips) in the fragment shader
|
||||
float lodBias = 0.0f;
|
||||
} uniformData;
|
||||
vks::Buffer uniformBuffer;
|
||||
|
||||
VkPipeline pipeline{ VK_NULL_HANDLE };
|
||||
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
|
||||
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
|
||||
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
|
||||
|
||||
VulkanExample() : VulkanExampleBase()
|
||||
{
|
||||
title = "Host image copy";
|
||||
camera.type = Camera::CameraType::lookat;
|
||||
camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f));
|
||||
camera.setRotation(glm::vec3(0.0f, 15.0f, 0.0f));
|
||||
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
||||
|
||||
// Enable required extensions
|
||||
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
|
||||
enabledDeviceExtensions.push_back(VK_KHR_FORMAT_FEATURE_FLAGS_2_EXTENSION_NAME);
|
||||
enabledDeviceExtensions.push_back(VK_KHR_COPY_COMMANDS_2_EXTENSION_NAME);
|
||||
enabledDeviceExtensions.push_back(VK_EXT_HOST_IMAGE_COPY_EXTENSION_NAME);
|
||||
|
||||
// Enable host image copy feature
|
||||
enabledPhysicalDeviceHostImageCopyFeaturesEXT.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_IMAGE_COPY_FEATURES_EXT;
|
||||
enabledPhysicalDeviceHostImageCopyFeaturesEXT.hostImageCopy = VK_TRUE;
|
||||
deviceCreatepNextChain = &enabledPhysicalDeviceHostImageCopyFeaturesEXT;
|
||||
}
|
||||
|
||||
~VulkanExample()
|
||||
{
|
||||
if (device) {
|
||||
destroyTextureImage(texture);
|
||||
vkDestroyPipeline(device, pipeline, nullptr);
|
||||
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
||||
vertexBuffer.destroy();
|
||||
indexBuffer.destroy();
|
||||
uniformBuffer.destroy();
|
||||
}
|
||||
}
|
||||
|
||||
// Enable physical device features required for this example
|
||||
virtual void getEnabledFeatures()
|
||||
{
|
||||
// Enable anisotropic filtering if supported
|
||||
if (deviceFeatures.samplerAnisotropy) {
|
||||
enabledFeatures.samplerAnisotropy = VK_TRUE;
|
||||
};
|
||||
}
|
||||
|
||||
/*
|
||||
Upload texture image data to the GPU
|
||||
|
||||
Vulkan offers two types of image tiling (memory layout):
|
||||
|
||||
Linear tiled images:
|
||||
These are stored as is and can be copied directly to. But due to the linear nature they're not a good match for GPUs and format and feature support is very limited.
|
||||
It's not advised to use linear tiled images for anything else than copying from host to GPU if buffer copies are not an option.
|
||||
Linear tiling is thus only implemented for learning purposes, one should always prefer optimal tiled image.
|
||||
|
||||
Optimal tiled images:
|
||||
These are stored in an implementation specific layout matching the capability of the hardware. They usually support more formats and features and are much faster.
|
||||
Optimal tiled images are stored on the device and not accessible by the host. So they can't be written directly to (like liner tiled images) and always require
|
||||
some sort of data copy, either from a buffer or a linear tiled image.
|
||||
|
||||
In Short: Always use optimal tiled images for rendering.
|
||||
*/
|
||||
void loadTexture()
|
||||
{
|
||||
// We use the Khronos texture format (https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/)
|
||||
std::string filename = getAssetPath() + "textures/metalplate01_rgba.ktx";
|
||||
// Texture data contains 4 channels (RGBA) with unnormalized 8-bit values, this is the most commonly supported format
|
||||
VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
|
||||
|
||||
ktxResult result;
|
||||
ktxTexture* ktxTexture;
|
||||
|
||||
#if defined(__ANDROID__)
|
||||
// Textures are stored inside the apk on Android (compressed)
|
||||
// So they need to be loaded via the asset manager
|
||||
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
||||
if (!asset) {
|
||||
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
|
||||
}
|
||||
size_t size = AAsset_getLength(asset);
|
||||
assert(size > 0);
|
||||
|
||||
ktx_uint8_t *textureData = new ktx_uint8_t[size];
|
||||
AAsset_read(asset, textureData, size);
|
||||
AAsset_close(asset);
|
||||
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
|
||||
delete[] textureData;
|
||||
#else
|
||||
if (!vks::tools::fileExists(filename)) {
|
||||
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
|
||||
}
|
||||
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
|
||||
#endif
|
||||
assert(result == KTX_SUCCESS);
|
||||
|
||||
// Get properties required for using and upload texture data from the ktx texture object
|
||||
texture.width = ktxTexture->baseWidth;
|
||||
texture.height = ktxTexture->baseHeight;
|
||||
texture.mipLevels = ktxTexture->numLevels;
|
||||
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
|
||||
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
|
||||
|
||||
// Copy data to an optimal tiled image using a direct
|
||||
|
||||
// Create optimal tiled target image on the device
|
||||
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
||||
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
||||
imageCreateInfo.format = format;
|
||||
imageCreateInfo.mipLevels = texture.mipLevels;
|
||||
imageCreateInfo.arrayLayers = 1;
|
||||
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
||||
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
||||
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||||
// Set initial layout of the image to undefined
|
||||
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
||||
imageCreateInfo.extent = { texture.width, texture.height, 1 };
|
||||
// @todo: commtn
|
||||
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_HOST_TRANSFER_BIT_EXT;
|
||||
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
|
||||
|
||||
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
||||
VkMemoryRequirements memReqs = {};
|
||||
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
|
||||
memAllocInfo.allocationSize = memReqs.size;
|
||||
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
||||
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
|
||||
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
|
||||
|
||||
// @todo: comment
|
||||
std::vector<VkMemoryToImageCopyEXT> memoryToImageCopies{};
|
||||
for (uint32_t i = 0; i < texture.mipLevels; i++) {
|
||||
ktx_size_t offset;
|
||||
KTX_error_code ret = ktxTexture_GetImageOffset(ktxTexture, i, 0, 0, &offset);
|
||||
assert(ret == KTX_SUCCESS);
|
||||
// Setup a buffer image copy structure for the current mip level
|
||||
VkMemoryToImageCopyEXT memoryToImageCopy = {};
|
||||
memoryToImageCopy.sType = VK_STRUCTURE_TYPE_MEMORY_TO_IMAGE_COPY_EXT;
|
||||
memoryToImageCopy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
memoryToImageCopy.imageSubresource.mipLevel = i;
|
||||
memoryToImageCopy.imageSubresource.baseArrayLayer = 0;
|
||||
memoryToImageCopy.imageSubresource.layerCount = 1;
|
||||
memoryToImageCopy.imageExtent.width = ktxTexture->baseWidth >> i;
|
||||
memoryToImageCopy.imageExtent.height = ktxTexture->baseHeight >> i;
|
||||
memoryToImageCopy.imageExtent.depth = 1;
|
||||
memoryToImageCopy.pHostPointer = ktxTextureData + offset;
|
||||
|
||||
memoryToImageCopies.push_back(memoryToImageCopy);
|
||||
}
|
||||
|
||||
VkImageSubresourceRange subresourceRange{};
|
||||
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
subresourceRange.baseMipLevel = 0;
|
||||
subresourceRange.levelCount = texture.mipLevels;
|
||||
subresourceRange.layerCount = 1;
|
||||
|
||||
VkHostImageLayoutTransitionInfoEXT hostImageLayoutTransitionInfo{};
|
||||
hostImageLayoutTransitionInfo.sType = VK_STRUCTURE_TYPE_HOST_IMAGE_LAYOUT_TRANSITION_INFO_EXT;
|
||||
hostImageLayoutTransitionInfo.image = texture.image;
|
||||
hostImageLayoutTransitionInfo.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
||||
hostImageLayoutTransitionInfo.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||
hostImageLayoutTransitionInfo.subresourceRange = subresourceRange;
|
||||
|
||||
vkTransitionImageLayoutEXT(device, 1, &hostImageLayoutTransitionInfo);
|
||||
|
||||
VkCopyMemoryToImageInfoEXT copyMemoryInfo{};
|
||||
copyMemoryInfo.sType = VK_STRUCTURE_TYPE_COPY_MEMORY_TO_IMAGE_INFO_EXT;
|
||||
copyMemoryInfo.dstImage = texture.image;
|
||||
copyMemoryInfo.dstImageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||
copyMemoryInfo.regionCount = static_cast<uint32_t>(memoryToImageCopies.size());
|
||||
copyMemoryInfo.pRegions = memoryToImageCopies.data();
|
||||
|
||||
vkCopyMemoryToImageEXT(device, ©MemoryInfo);
|
||||
|
||||
ktxTexture_Destroy(ktxTexture);
|
||||
|
||||
// Create a texture sampler
|
||||
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
|
||||
sampler.magFilter = VK_FILTER_LINEAR;
|
||||
sampler.minFilter = VK_FILTER_LINEAR;
|
||||
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
||||
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
||||
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
||||
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
||||
sampler.mipLodBias = 0.0f;
|
||||
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
||||
sampler.minLod = 0.0f;
|
||||
sampler.maxLod = (float)texture.mipLevels;
|
||||
if (vulkanDevice->features.samplerAnisotropy) {
|
||||
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
|
||||
sampler.anisotropyEnable = VK_TRUE;
|
||||
} else {
|
||||
sampler.maxAnisotropy = 1.0;
|
||||
sampler.anisotropyEnable = VK_FALSE;
|
||||
}
|
||||
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
||||
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler));
|
||||
|
||||
// Create image view
|
||||
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
|
||||
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
||||
view.format = format;
|
||||
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
view.subresourceRange.baseMipLevel = 0;
|
||||
view.subresourceRange.baseArrayLayer = 0;
|
||||
view.subresourceRange.layerCount = 1;
|
||||
view.subresourceRange.levelCount = texture.mipLevels;
|
||||
view.image = texture.image;
|
||||
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
|
||||
}
|
||||
|
||||
// Free all Vulkan resources used by a texture object
|
||||
void destroyTextureImage(Texture texture)
|
||||
{
|
||||
vkDestroyImageView(device, texture.view, nullptr);
|
||||
vkDestroyImage(device, texture.image, nullptr);
|
||||
vkDestroySampler(device, texture.sampler, nullptr);
|
||||
vkFreeMemory(device, texture.deviceMemory, nullptr);
|
||||
}
|
||||
|
||||
void buildCommandBuffers()
|
||||
{
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
||||
|
||||
VkClearValue clearValues[2];
|
||||
clearValues[0].color = defaultClearColor;
|
||||
clearValues[1].depthStencil = { 1.0f, 0 };
|
||||
|
||||
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
||||
renderPassBeginInfo.renderPass = renderPass;
|
||||
renderPassBeginInfo.renderArea.offset.x = 0;
|
||||
renderPassBeginInfo.renderArea.offset.y = 0;
|
||||
renderPassBeginInfo.renderArea.extent.width = width;
|
||||
renderPassBeginInfo.renderArea.extent.height = height;
|
||||
renderPassBeginInfo.clearValueCount = 2;
|
||||
renderPassBeginInfo.pClearValues = clearValues;
|
||||
|
||||
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
||||
{
|
||||
// Set target frame buffer
|
||||
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
||||
|
||||
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
||||
|
||||
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||
|
||||
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
||||
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
||||
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
||||
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
||||
|
||||
VkDeviceSize offsets[1] = { 0 };
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets);
|
||||
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
|
||||
|
||||
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
|
||||
|
||||
drawUI(drawCmdBuffers[i]);
|
||||
|
||||
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
||||
|
||||
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
||||
}
|
||||
}
|
||||
|
||||
// Creates a vertex and index buffer for a quad made of two triangles
|
||||
// This is used to display the texture on
|
||||
void generateQuad()
|
||||
{
|
||||
// Setup vertices for a single uv-mapped quad made from two triangles
|
||||
std::vector<Vertex> vertices =
|
||||
{
|
||||
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
|
||||
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
|
||||
{ { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } },
|
||||
{ { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }
|
||||
};
|
||||
|
||||
// Setup indices
|
||||
std::vector<uint32_t> indices = { 0,1,2, 2,3,0 };
|
||||
indexCount = static_cast<uint32_t>(indices.size());
|
||||
|
||||
// Create buffers and upload data to the GPU
|
||||
struct StagingBuffers {
|
||||
vks::Buffer vertices;
|
||||
vks::Buffer indices;
|
||||
} stagingBuffers;
|
||||
|
||||
// Host visible source buffers (staging)
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.vertices, vertices.size() * sizeof(Vertex), vertices.data()));
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.indices, indices.size() * sizeof(uint32_t), indices.data()));
|
||||
|
||||
// Device local destination buffers
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex)));
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &indexBuffer, indices.size() * sizeof(uint32_t)));
|
||||
|
||||
// Copy from host do device
|
||||
vulkanDevice->copyBuffer(&stagingBuffers.vertices, &vertexBuffer, queue);
|
||||
vulkanDevice->copyBuffer(&stagingBuffers.indices, &indexBuffer, queue);
|
||||
|
||||
// Clean up
|
||||
stagingBuffers.vertices.destroy();
|
||||
stagingBuffers.indices.destroy();
|
||||
}
|
||||
|
||||
void setupDescriptors()
|
||||
{
|
||||
// Pool
|
||||
std::vector<VkDescriptorPoolSize> poolSizes = {
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
||||
// The sample uses a combined image + sampler descriptor to sample the texture in the fragment shader
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
|
||||
};
|
||||
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
||||
|
||||
// Layout
|
||||
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
||||
// Binding 0 : Vertex shader uniform buffer
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
|
||||
// Binding 1 : Fragment shader image sampler
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
|
||||
};
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
||||
|
||||
// Set
|
||||
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
||||
|
||||
// Setup a descriptor image info for the current texture to be used as a combined image sampler
|
||||
VkDescriptorImageInfo textureDescriptor;
|
||||
textureDescriptor.imageView = texture.view;
|
||||
textureDescriptor.sampler = texture.sampler;
|
||||
textureDescriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||
|
||||
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
||||
// Binding 0 : Vertex shader uniform buffer
|
||||
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
|
||||
// Binding 1 : Fragment shader texture sampler
|
||||
// Fragment shader: layout (binding = 1) uniform sampler2D samplerColor;
|
||||
vks::initializers::writeDescriptorSet(descriptorSet,
|
||||
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // The descriptor set will use a combined image sampler (as opposed to splitting image and sampler)
|
||||
1, // Shader binding point 1
|
||||
&textureDescriptor) // Pointer to the descriptor image for our texture
|
||||
};
|
||||
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
|
||||
}
|
||||
|
||||
void preparePipelines()
|
||||
{
|
||||
// Layout
|
||||
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
||||
|
||||
// Pipeline
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
||||
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
||||
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
||||
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
||||
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
|
||||
|
||||
// Shaders
|
||||
shaderStages[0] = loadShader(getShadersPath() + "texture/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
||||
shaderStages[1] = loadShader(getShadersPath() + "texture/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
|
||||
// Vertex input state
|
||||
std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
|
||||
vks::initializers::vertexInputBindingDescription(0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX)
|
||||
};
|
||||
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
|
||||
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)),
|
||||
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv)),
|
||||
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal)),
|
||||
};
|
||||
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
||||
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
|
||||
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
|
||||
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
|
||||
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
|
||||
|
||||
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
||||
pipelineCreateInfo.pVertexInputState = &vertexInputState;
|
||||
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
||||
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
||||
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
||||
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
||||
pipelineCreateInfo.pViewportState = &viewportState;
|
||||
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
||||
pipelineCreateInfo.pDynamicState = &dynamicState;
|
||||
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
||||
pipelineCreateInfo.pStages = shaderStages.data();
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
|
||||
}
|
||||
|
||||
// Prepare and initialize uniform buffer containing shader uniforms
|
||||
void prepareUniformBuffers()
|
||||
{
|
||||
// Vertex shader uniform buffer block
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(uniformData), &uniformData));
|
||||
VK_CHECK_RESULT(uniformBuffer.map());
|
||||
}
|
||||
|
||||
void updateUniformBuffers()
|
||||
{
|
||||
uniformData.projection = camera.matrices.perspective;
|
||||
uniformData.modelView = camera.matrices.view;
|
||||
uniformData.viewPos = camera.viewPos;
|
||||
memcpy(uniformBuffer.mapped, &uniformData, sizeof(uniformData));
|
||||
}
|
||||
|
||||
void prepare()
|
||||
{
|
||||
VulkanExampleBase::prepare();
|
||||
|
||||
// Get the function pointers required host image copies
|
||||
vkCopyMemoryToImageEXT = reinterpret_cast<PFN_vkCopyMemoryToImageEXT>(vkGetDeviceProcAddr(device, "vkCopyMemoryToImageEXT"));
|
||||
vkTransitionImageLayoutEXT = reinterpret_cast<PFN_vkTransitionImageLayoutEXT>(vkGetDeviceProcAddr(device, "vkTransitionImageLayoutEXT"));
|
||||
|
||||
loadTexture();
|
||||
generateQuad();
|
||||
prepareUniformBuffers();
|
||||
setupDescriptors();
|
||||
preparePipelines();
|
||||
buildCommandBuffers();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
void draw()
|
||||
{
|
||||
VulkanExampleBase::prepareFrame();
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
||||
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
||||
VulkanExampleBase::submitFrame();
|
||||
}
|
||||
|
||||
virtual void render()
|
||||
{
|
||||
if (!prepared)
|
||||
return;
|
||||
updateUniformBuffers();
|
||||
draw();
|
||||
}
|
||||
|
||||
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
||||
{
|
||||
if (overlay->header("Settings")) {
|
||||
if (overlay->sliderFloat("LOD bias", &uniformData.lodBias, 0.0f, (float)texture.mipLevels)) {
|
||||
updateUniformBuffers();
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
VULKAN_EXAMPLE_MAIN()
|
||||
Loading…
Add table
Add a link
Reference in a new issue