Moved example source files into sub folder
This commit is contained in:
parent
a17e3924b3
commit
94a076e1ae
69 changed files with 685 additions and 164 deletions
833
examples/texture3d/texture3d.cpp
Normal file
833
examples/texture3d/texture3d.cpp
Normal file
|
|
@ -0,0 +1,833 @@
|
|||
/*
|
||||
* Vulkan Example - 3D texture loading (and generation using perlin noise) example
|
||||
*
|
||||
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <vector>
|
||||
#include <random>
|
||||
#include <numeric>
|
||||
#include <ctime>
|
||||
|
||||
#define GLM_FORCE_RADIANS
|
||||
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
|
||||
#include <vulkan/vulkan.h>
|
||||
#include "vulkanexamplebase.h"
|
||||
#include "VulkanDevice.hpp"
|
||||
#include "VulkanBuffer.hpp"
|
||||
#include "VulkanModel.hpp"
|
||||
|
||||
#define VERTEX_BUFFER_BIND_ID 0
|
||||
#define ENABLE_VALIDATION false
|
||||
|
||||
// Vertex layout for this example
|
||||
struct Vertex {
|
||||
float pos[3];
|
||||
float uv[2];
|
||||
float normal[3];
|
||||
};
|
||||
|
||||
// Translation of Ken Perlin's JAVA implementation (http://mrl.nyu.edu/~perlin/noise/)
|
||||
template <typename T>
|
||||
class PerlinNoise
|
||||
{
|
||||
private:
|
||||
uint32_t permutations[512];
|
||||
T fade(T t)
|
||||
{
|
||||
return t * t * t * (t * (t * (T)6 - (T)15) + (T)10);
|
||||
}
|
||||
T lerp(T t, T a, T b)
|
||||
{
|
||||
return a + t * (b - a);
|
||||
}
|
||||
T grad(int hash, T x, T y, T z)
|
||||
{
|
||||
// Convert LO 4 bits of hash code into 12 gradient directions
|
||||
int h = hash & 15;
|
||||
T u = h < 8 ? x : y;
|
||||
T v = h < 4 ? y : h == 12 || h == 14 ? x : z;
|
||||
return ((h & 1) == 0 ? u : -u) + ((h & 2) == 0 ? v : -v);
|
||||
}
|
||||
public:
|
||||
PerlinNoise()
|
||||
{
|
||||
// Generate random lookup for permutations containing all numbers from 0..255
|
||||
std::vector<uint8_t> plookup;
|
||||
plookup.resize(256);
|
||||
std::iota(plookup.begin(), plookup.end(), 0);
|
||||
std::default_random_engine rndEngine(std::random_device{}());
|
||||
std::shuffle(plookup.begin(), plookup.end(), rndEngine);
|
||||
|
||||
for (uint32_t i = 0; i < 256; i++)
|
||||
{
|
||||
permutations[i] = permutations[256 + i] = plookup[i];
|
||||
}
|
||||
}
|
||||
T noise(T x, T y, T z)
|
||||
{
|
||||
// Find unit cube that contains point
|
||||
int32_t X = (int32_t)floor(x) & 255;
|
||||
int32_t Y = (int32_t)floor(y) & 255;
|
||||
int32_t Z = (int32_t)floor(z) & 255;
|
||||
// Find relative x,y,z of point in cube
|
||||
x -= floor(x);
|
||||
y -= floor(y);
|
||||
z -= floor(z);
|
||||
|
||||
// Compute fade curves for each of x,y,z
|
||||
T u = fade(x);
|
||||
T v = fade(y);
|
||||
T w = fade(z);
|
||||
|
||||
// Hash coordinates of the 8 cube corners
|
||||
uint32_t A = permutations[X] + Y;
|
||||
uint32_t AA = permutations[A] + Z;
|
||||
uint32_t AB = permutations[A + 1] + Z;
|
||||
uint32_t B = permutations[X + 1] + Y;
|
||||
uint32_t BA = permutations[B] + Z;
|
||||
uint32_t BB = permutations[B + 1] + Z;
|
||||
|
||||
// And add blended results for 8 corners of the cube;
|
||||
T res = lerp(w, lerp(v,
|
||||
lerp(u, grad(permutations[AA], x, y, z), grad(permutations[BA], x - 1, y, z)), lerp(u, grad(permutations[AB], x, y - 1, z), grad(permutations[BB], x - 1, y - 1, z))),
|
||||
lerp(v, lerp(u, grad(permutations[AA + 1], x, y, z - 1), grad(permutations[BA + 1], x - 1, y, z - 1)), lerp(u, grad(permutations[AB + 1], x, y - 1, z - 1), grad(permutations[BB + 1], x - 1, y - 1, z - 1))));
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
// Fractal noise generator based on perlin noise above
|
||||
template <typename T>
|
||||
class FractalNoise
|
||||
{
|
||||
private:
|
||||
PerlinNoise<float> perlinNoise;
|
||||
uint32_t octaves;
|
||||
T frequency;
|
||||
T amplitude;
|
||||
T persistence;
|
||||
public:
|
||||
|
||||
FractalNoise(const PerlinNoise<T> &perlinNoise)
|
||||
{
|
||||
this->perlinNoise = perlinNoise;
|
||||
octaves = 6;
|
||||
persistence = (T)0.5;
|
||||
}
|
||||
|
||||
T noise(T x, T y, T z)
|
||||
{
|
||||
T sum = 0;
|
||||
T frequency = (T)1;
|
||||
T amplitude = (T)1;
|
||||
T max = (T)0;
|
||||
for (int32_t i = 0; i < octaves; i++)
|
||||
{
|
||||
sum += perlinNoise.noise(x * frequency, y * frequency, z * frequency) * amplitude;
|
||||
max += amplitude;
|
||||
amplitude *= persistence;
|
||||
frequency *= (T)2;
|
||||
}
|
||||
|
||||
sum = sum / max;
|
||||
return (sum + (T)1.0) / (T)2.0;
|
||||
}
|
||||
};
|
||||
|
||||
class VulkanExample : public VulkanExampleBase
|
||||
{
|
||||
public:
|
||||
// Contains all Vulkan objects that are required to store and use a 3D texture
|
||||
struct Texture {
|
||||
VkSampler sampler = VK_NULL_HANDLE;
|
||||
VkImage image = VK_NULL_HANDLE;
|
||||
VkImageLayout imageLayout;
|
||||
VkDeviceMemory deviceMemory = VK_NULL_HANDLE;
|
||||
VkImageView view = VK_NULL_HANDLE;
|
||||
VkDescriptorImageInfo descriptor;
|
||||
VkFormat format;
|
||||
uint32_t width, height, depth;
|
||||
uint32_t mipLevels;
|
||||
} texture;
|
||||
|
||||
bool regenerateNoise = true;
|
||||
|
||||
struct {
|
||||
vks::Model cube;
|
||||
} models;
|
||||
|
||||
struct {
|
||||
VkPipelineVertexInputStateCreateInfo inputState;
|
||||
std::vector<VkVertexInputBindingDescription> inputBinding;
|
||||
std::vector<VkVertexInputAttributeDescription> inputAttributes;
|
||||
} vertices;
|
||||
|
||||
vks::Buffer vertexBuffer;
|
||||
vks::Buffer indexBuffer;
|
||||
uint32_t indexCount;
|
||||
|
||||
vks::Buffer uniformBufferVS;
|
||||
|
||||
struct UboVS {
|
||||
glm::mat4 projection;
|
||||
glm::mat4 model;
|
||||
glm::vec4 viewPos;
|
||||
float depth = 0.0f;
|
||||
} uboVS;
|
||||
|
||||
struct {
|
||||
VkPipeline solid;
|
||||
} pipelines;
|
||||
|
||||
VkPipelineLayout pipelineLayout;
|
||||
VkDescriptorSet descriptorSet;
|
||||
VkDescriptorSetLayout descriptorSetLayout;
|
||||
|
||||
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
||||
{
|
||||
zoom = -2.5f;
|
||||
rotation = { 0.0f, 15.0f, 0.0f };
|
||||
title = "3D textures";
|
||||
settings.overlay = true;
|
||||
srand((unsigned int)time(NULL));
|
||||
}
|
||||
|
||||
~VulkanExample()
|
||||
{
|
||||
// Clean up used Vulkan resources
|
||||
// Note : Inherited destructor cleans up resources stored in base class
|
||||
|
||||
destroyTextureImage(texture);
|
||||
|
||||
vkDestroyPipeline(device, pipelines.solid, nullptr);
|
||||
|
||||
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
||||
|
||||
vertexBuffer.destroy();
|
||||
indexBuffer.destroy();
|
||||
uniformBufferVS.destroy();
|
||||
}
|
||||
|
||||
// Prepare all Vulkan resources for the 3D texture (including descriptors)
|
||||
// Does not fill the texture with data
|
||||
void prepareNoiseTexture(uint32_t width, uint32_t height, uint32_t depth)
|
||||
{
|
||||
// A 3D texture is described as width x height x depth
|
||||
texture.width = width;
|
||||
texture.height = height;
|
||||
texture.depth = depth;
|
||||
texture.mipLevels = 1;
|
||||
texture.format = VK_FORMAT_R8_UNORM;
|
||||
|
||||
// Format support check
|
||||
// 3D texture support in Vulkan is mandatory (in contrast to OpenGL) so no need to check if it's supported
|
||||
VkFormatProperties formatProperties;
|
||||
vkGetPhysicalDeviceFormatProperties(physicalDevice, texture.format, &formatProperties);
|
||||
// Check if format supports transfer
|
||||
if (!formatProperties.optimalTilingFeatures && VK_IMAGE_USAGE_TRANSFER_DST_BIT)
|
||||
{
|
||||
std::cout << "Error: Device does not support flag TRANSFER_DST for selected texture format!" << std::endl;
|
||||
return;
|
||||
}
|
||||
// Check if GPU supports requested 3D texture dimensions
|
||||
uint32_t maxImageDimension3D(vulkanDevice->properties.limits.maxImageDimension3D);
|
||||
if (width > maxImageDimension3D || height > maxImageDimension3D || depth > maxImageDimension3D)
|
||||
{
|
||||
std::cout << "Error: Requested texture dimensions is greater than supported 3D texture dimension!" << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
// Create optimal tiled target image
|
||||
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
||||
imageCreateInfo.imageType = VK_IMAGE_TYPE_3D;
|
||||
imageCreateInfo.format = texture.format;
|
||||
imageCreateInfo.mipLevels = texture.mipLevels;
|
||||
imageCreateInfo.arrayLayers = 1;
|
||||
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
||||
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
||||
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
|
||||
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||||
imageCreateInfo.extent.width = texture.width;
|
||||
imageCreateInfo.extent.height = texture.width;
|
||||
imageCreateInfo.extent.depth = texture.depth;
|
||||
// Set initial layout of the image to undefined
|
||||
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
||||
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
||||
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
|
||||
|
||||
// Device local memory to back up image
|
||||
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
||||
VkMemoryRequirements memReqs = {};
|
||||
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
|
||||
memAllocInfo.allocationSize = memReqs.size;
|
||||
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
||||
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
|
||||
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
|
||||
|
||||
// Create sampler
|
||||
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
|
||||
sampler.magFilter = VK_FILTER_LINEAR;
|
||||
sampler.minFilter = VK_FILTER_LINEAR;
|
||||
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
||||
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
||||
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
||||
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
||||
sampler.mipLodBias = 0.0f;
|
||||
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
||||
sampler.minLod = 0.0f;
|
||||
sampler.maxLod = 0.0f;
|
||||
sampler.maxAnisotropy = 1.0;
|
||||
sampler.anisotropyEnable = VK_FALSE;
|
||||
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
||||
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler));
|
||||
|
||||
// Create image view
|
||||
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
|
||||
view.image = texture.image;
|
||||
view.viewType = VK_IMAGE_VIEW_TYPE_3D;
|
||||
view.format = texture.format;
|
||||
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
|
||||
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
view.subresourceRange.baseMipLevel = 0;
|
||||
view.subresourceRange.baseArrayLayer = 0;
|
||||
view.subresourceRange.layerCount = 1;
|
||||
view.subresourceRange.levelCount = 1;
|
||||
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
|
||||
|
||||
// Fill image descriptor image info to be used descriptor set setup
|
||||
texture.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||
texture.descriptor.imageView = texture.view;
|
||||
texture.descriptor.sampler = texture.sampler;
|
||||
}
|
||||
|
||||
// Generate randomized noise and upload it to the 3D texture using staging
|
||||
void updateNoiseTexture()
|
||||
{
|
||||
const uint32_t texMemSize = texture.width * texture.height * texture.depth;
|
||||
|
||||
uint8_t *data = new uint8_t[texMemSize];
|
||||
memset(data, 0, texMemSize);
|
||||
|
||||
// Generate perlin based noise
|
||||
std::cout << "Generating " << texture.width << " x " << texture.height << " x " << texture.depth << " noise texture..." << std::endl;
|
||||
|
||||
auto tStart = std::chrono::high_resolution_clock::now();
|
||||
|
||||
PerlinNoise<float> perlinNoise;
|
||||
FractalNoise<float> fractalNoise(perlinNoise);
|
||||
|
||||
std::default_random_engine rndEngine(std::random_device{}());
|
||||
const int32_t noiseType = rand() % 2;
|
||||
const float noiseScale = static_cast<float>(rand() % 10) + 4.0f;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int32_t z = 0; z < texture.depth; z++)
|
||||
{
|
||||
for (uint32_t y = 0; y < texture.height; y++)
|
||||
{
|
||||
for (int32_t x = 0; x < texture.width; x++)
|
||||
{
|
||||
float nx = (float)x / (float)texture.width;
|
||||
float ny = (float)y / (float)texture.height;
|
||||
float nz = (float)z / (float)texture.depth;
|
||||
#define FRACTAL
|
||||
#ifdef FRACTAL
|
||||
float n = fractalNoise.noise(nx * noiseScale, ny * noiseScale, nz * noiseScale);
|
||||
#else
|
||||
float n = 20.0 * perlinNoise.noise(nx, ny, nz);
|
||||
#endif
|
||||
n = n - floor(n);
|
||||
|
||||
data[x + y * texture.width + z * texture.width * texture.height] = static_cast<uint8_t>(floor(n * 255));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
auto tEnd = std::chrono::high_resolution_clock::now();
|
||||
auto tDiff = std::chrono::duration<double, std::milli>(tEnd - tStart).count();
|
||||
|
||||
std::cout << "Done in " << tDiff << "ms" << std::endl;
|
||||
|
||||
// Create a host-visible staging buffer that contains the raw image data
|
||||
VkBuffer stagingBuffer;
|
||||
VkDeviceMemory stagingMemory;
|
||||
|
||||
// Buffer object
|
||||
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
|
||||
bufferCreateInfo.size = texMemSize;
|
||||
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
||||
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||||
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
|
||||
|
||||
// Allocate host visible memory for data upload
|
||||
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
||||
VkMemoryRequirements memReqs = {};
|
||||
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
|
||||
memAllocInfo.allocationSize = memReqs.size;
|
||||
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
||||
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
|
||||
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
|
||||
|
||||
// Copy texture data into staging buffer
|
||||
uint8_t *mapped;
|
||||
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&mapped));
|
||||
memcpy(mapped, data, texMemSize);
|
||||
vkUnmapMemory(device, stagingMemory);
|
||||
|
||||
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||
|
||||
// Image barrier for optimal image
|
||||
|
||||
// The sub resource range describes the regions of the image we will be transition
|
||||
VkImageSubresourceRange subresourceRange = {};
|
||||
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
subresourceRange.baseMipLevel = 0;
|
||||
subresourceRange.levelCount = 1;
|
||||
subresourceRange.layerCount = 1;
|
||||
|
||||
// Optimal image will be used as destination for the copy, so we must transfer from our
|
||||
// initial undefined image layout to the transfer destination layout
|
||||
vks::tools::setImageLayout(
|
||||
copyCmd,
|
||||
texture.image,
|
||||
VK_IMAGE_LAYOUT_UNDEFINED,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
||||
subresourceRange);
|
||||
|
||||
// Copy 3D noise data to texture
|
||||
|
||||
// Setup buffer copy regions
|
||||
VkBufferImageCopy bufferCopyRegion{};
|
||||
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
bufferCopyRegion.imageSubresource.mipLevel = 0;
|
||||
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
|
||||
bufferCopyRegion.imageSubresource.layerCount = 1;
|
||||
bufferCopyRegion.imageExtent.width = texture.width;
|
||||
bufferCopyRegion.imageExtent.height = texture.height;
|
||||
bufferCopyRegion.imageExtent.depth = texture.depth;
|
||||
|
||||
vkCmdCopyBufferToImage(
|
||||
copyCmd,
|
||||
stagingBuffer,
|
||||
texture.image,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
||||
1,
|
||||
&bufferCopyRegion);
|
||||
|
||||
// Change texture image layout to shader read after all mip levels have been copied
|
||||
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||
vks::tools::setImageLayout(
|
||||
copyCmd,
|
||||
texture.image,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
||||
texture.imageLayout,
|
||||
subresourceRange);
|
||||
|
||||
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
|
||||
|
||||
// Clean up staging resources
|
||||
delete[] data;
|
||||
vkFreeMemory(device, stagingMemory, nullptr);
|
||||
vkDestroyBuffer(device, stagingBuffer, nullptr);
|
||||
regenerateNoise = false;
|
||||
}
|
||||
|
||||
// Free all Vulkan resources used a texture object
|
||||
void destroyTextureImage(Texture texture)
|
||||
{
|
||||
if (texture.view != VK_NULL_HANDLE)
|
||||
vkDestroyImageView(device, texture.view, nullptr);
|
||||
if (texture.image != VK_NULL_HANDLE)
|
||||
vkDestroyImage(device, texture.image, nullptr);
|
||||
if (texture.sampler != VK_NULL_HANDLE)
|
||||
vkDestroySampler(device, texture.sampler, nullptr);
|
||||
if (texture.deviceMemory != VK_NULL_HANDLE)
|
||||
vkFreeMemory(device, texture.deviceMemory, nullptr);
|
||||
}
|
||||
|
||||
void buildCommandBuffers()
|
||||
{
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
||||
|
||||
VkClearValue clearValues[2];
|
||||
clearValues[0].color = defaultClearColor;
|
||||
clearValues[1].depthStencil = { 1.0f, 0 };
|
||||
|
||||
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
||||
renderPassBeginInfo.renderPass = renderPass;
|
||||
renderPassBeginInfo.renderArea.offset.x = 0;
|
||||
renderPassBeginInfo.renderArea.offset.y = 0;
|
||||
renderPassBeginInfo.renderArea.extent.width = width;
|
||||
renderPassBeginInfo.renderArea.extent.height = height;
|
||||
renderPassBeginInfo.clearValueCount = 2;
|
||||
renderPassBeginInfo.pClearValues = clearValues;
|
||||
|
||||
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
||||
{
|
||||
// Set target frame buffer
|
||||
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
||||
|
||||
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
||||
|
||||
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||
|
||||
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
||||
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
||||
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
||||
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
|
||||
|
||||
VkDeviceSize offsets[1] = { 0 };
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets);
|
||||
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
|
||||
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
|
||||
|
||||
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
||||
|
||||
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
||||
}
|
||||
}
|
||||
|
||||
void draw()
|
||||
{
|
||||
VulkanExampleBase::prepareFrame();
|
||||
|
||||
// Command buffer to be sumitted to the queue
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
||||
|
||||
// Submit to queue
|
||||
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
||||
|
||||
VulkanExampleBase::submitFrame();
|
||||
}
|
||||
|
||||
void generateQuad()
|
||||
{
|
||||
// Setup vertices for a single uv-mapped quad made from two triangles
|
||||
std::vector<Vertex> vertices =
|
||||
{
|
||||
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
|
||||
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
|
||||
{ { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } },
|
||||
{ { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }
|
||||
};
|
||||
|
||||
// Setup indices
|
||||
std::vector<uint32_t> indices = { 0,1,2, 2,3,0 };
|
||||
indexCount = static_cast<uint32_t>(indices.size());
|
||||
|
||||
// Create buffers
|
||||
// For the sake of simplicity we won't stage the vertex data to the gpu memory
|
||||
// Vertex buffer
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&vertexBuffer,
|
||||
vertices.size() * sizeof(Vertex),
|
||||
vertices.data()));
|
||||
// Index buffer
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&indexBuffer,
|
||||
indices.size() * sizeof(uint32_t),
|
||||
indices.data()));
|
||||
}
|
||||
|
||||
void setupVertexDescriptions()
|
||||
{
|
||||
// Binding description
|
||||
vertices.inputBinding.resize(1);
|
||||
vertices.inputBinding[0] =
|
||||
vks::initializers::vertexInputBindingDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
sizeof(Vertex),
|
||||
VK_VERTEX_INPUT_RATE_VERTEX);
|
||||
|
||||
// Attribute descriptions
|
||||
// Describes memory layout and shader positions
|
||||
vertices.inputAttributes.resize(3);
|
||||
// Location 0 : Position
|
||||
vertices.inputAttributes[0] =
|
||||
vks::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
0,
|
||||
VK_FORMAT_R32G32B32_SFLOAT,
|
||||
offsetof(Vertex, pos));
|
||||
// Location 1 : Texture coordinates
|
||||
vertices.inputAttributes[1] =
|
||||
vks::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
1,
|
||||
VK_FORMAT_R32G32_SFLOAT,
|
||||
offsetof(Vertex, uv));
|
||||
// Location 1 : Vertex normal
|
||||
vertices.inputAttributes[2] =
|
||||
vks::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
2,
|
||||
VK_FORMAT_R32G32B32_SFLOAT,
|
||||
offsetof(Vertex, normal));
|
||||
|
||||
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
||||
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.inputBinding.size());
|
||||
vertices.inputState.pVertexBindingDescriptions = vertices.inputBinding.data();
|
||||
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.inputAttributes.size());
|
||||
vertices.inputState.pVertexAttributeDescriptions = vertices.inputAttributes.data();
|
||||
}
|
||||
|
||||
void setupDescriptorPool()
|
||||
{
|
||||
// Example uses one ubo and one image sampler
|
||||
std::vector<VkDescriptorPoolSize> poolSizes =
|
||||
{
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
|
||||
};
|
||||
|
||||
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
||||
vks::initializers::descriptorPoolCreateInfo(
|
||||
static_cast<uint32_t>(poolSizes.size()),
|
||||
poolSizes.data(),
|
||||
2);
|
||||
|
||||
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
||||
}
|
||||
|
||||
void setupDescriptorSetLayout()
|
||||
{
|
||||
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
|
||||
{
|
||||
// Binding 0 : Vertex shader uniform buffer
|
||||
vks::initializers::descriptorSetLayoutBinding(
|
||||
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
||||
VK_SHADER_STAGE_VERTEX_BIT,
|
||||
0),
|
||||
// Binding 1 : Fragment shader image sampler
|
||||
vks::initializers::descriptorSetLayoutBinding(
|
||||
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
||||
VK_SHADER_STAGE_FRAGMENT_BIT,
|
||||
1)
|
||||
};
|
||||
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
||||
vks::initializers::descriptorSetLayoutCreateInfo(
|
||||
setLayoutBindings.data(),
|
||||
static_cast<uint32_t>(setLayoutBindings.size()));
|
||||
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
||||
|
||||
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
||||
vks::initializers::pipelineLayoutCreateInfo(
|
||||
&descriptorSetLayout,
|
||||
1);
|
||||
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
||||
}
|
||||
|
||||
void setupDescriptorSet()
|
||||
{
|
||||
VkDescriptorSetAllocateInfo allocInfo =
|
||||
vks::initializers::descriptorSetAllocateInfo(
|
||||
descriptorPool,
|
||||
&descriptorSetLayout,
|
||||
1);
|
||||
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
||||
|
||||
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
|
||||
{
|
||||
// Binding 0 : Vertex shader uniform buffer
|
||||
vks::initializers::writeDescriptorSet(
|
||||
descriptorSet,
|
||||
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
||||
0,
|
||||
&uniformBufferVS.descriptor),
|
||||
// Binding 1 : Fragment shader texture sampler
|
||||
vks::initializers::writeDescriptorSet(
|
||||
descriptorSet,
|
||||
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
||||
1,
|
||||
&texture.descriptor)
|
||||
};
|
||||
|
||||
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
|
||||
}
|
||||
|
||||
void preparePipelines()
|
||||
{
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
||||
vks::initializers::pipelineInputAssemblyStateCreateInfo(
|
||||
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
||||
0,
|
||||
VK_FALSE);
|
||||
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
||||
vks::initializers::pipelineRasterizationStateCreateInfo(
|
||||
VK_POLYGON_MODE_FILL,
|
||||
VK_CULL_MODE_NONE,
|
||||
VK_FRONT_FACE_COUNTER_CLOCKWISE,
|
||||
0);
|
||||
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
||||
vks::initializers::pipelineColorBlendAttachmentState(
|
||||
0xf,
|
||||
VK_FALSE);
|
||||
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
||||
vks::initializers::pipelineColorBlendStateCreateInfo(
|
||||
1,
|
||||
&blendAttachmentState);
|
||||
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
||||
vks::initializers::pipelineDepthStencilStateCreateInfo(
|
||||
VK_TRUE,
|
||||
VK_TRUE,
|
||||
VK_COMPARE_OP_LESS_OR_EQUAL);
|
||||
|
||||
VkPipelineViewportStateCreateInfo viewportState =
|
||||
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
|
||||
VkPipelineMultisampleStateCreateInfo multisampleState =
|
||||
vks::initializers::pipelineMultisampleStateCreateInfo(
|
||||
VK_SAMPLE_COUNT_1_BIT,
|
||||
0);
|
||||
|
||||
std::vector<VkDynamicState> dynamicStateEnables = {
|
||||
VK_DYNAMIC_STATE_VIEWPORT,
|
||||
VK_DYNAMIC_STATE_SCISSOR
|
||||
};
|
||||
VkPipelineDynamicStateCreateInfo dynamicState =
|
||||
vks::initializers::pipelineDynamicStateCreateInfo(
|
||||
dynamicStateEnables.data(),
|
||||
static_cast<uint32_t>(dynamicStateEnables.size()),
|
||||
0);
|
||||
|
||||
// Load shaders
|
||||
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
|
||||
|
||||
shaderStages[0] = loadShader(getAssetPath() + "shaders/texture3d/texture3d.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
||||
shaderStages[1] = loadShader(getAssetPath() + "shaders/texture3d/texture3d.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
|
||||
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
||||
vks::initializers::pipelineCreateInfo(
|
||||
pipelineLayout,
|
||||
renderPass,
|
||||
0);
|
||||
|
||||
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
||||
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
||||
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
||||
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
||||
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
||||
pipelineCreateInfo.pViewportState = &viewportState;
|
||||
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
||||
pipelineCreateInfo.pDynamicState = &dynamicState;
|
||||
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
||||
pipelineCreateInfo.pStages = shaderStages.data();
|
||||
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
|
||||
}
|
||||
|
||||
// Prepare and initialize uniform buffer containing shader uniforms
|
||||
void prepareUniformBuffers()
|
||||
{
|
||||
// Vertex shader uniform buffer block
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&uniformBufferVS,
|
||||
sizeof(uboVS),
|
||||
&uboVS));
|
||||
|
||||
updateUniformBuffers();
|
||||
}
|
||||
|
||||
void updateUniformBuffers(bool viewchanged = true)
|
||||
{
|
||||
if (viewchanged)
|
||||
{
|
||||
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f);
|
||||
glm::mat4 viewMatrix = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, zoom));
|
||||
|
||||
uboVS.model = viewMatrix * glm::translate(glm::mat4(1.0f), cameraPos);
|
||||
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
|
||||
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
|
||||
|
||||
uboVS.viewPos = glm::vec4(0.0f, 0.0f, -zoom, 0.0f);
|
||||
}
|
||||
else
|
||||
{
|
||||
uboVS.depth += frameTimer * 0.15f;
|
||||
if (uboVS.depth > 1.0f)
|
||||
uboVS.depth = uboVS.depth - 1.0f;
|
||||
}
|
||||
|
||||
VK_CHECK_RESULT(uniformBufferVS.map());
|
||||
memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS));
|
||||
uniformBufferVS.unmap();
|
||||
}
|
||||
|
||||
void prepare()
|
||||
{
|
||||
VulkanExampleBase::prepare();
|
||||
generateQuad();
|
||||
setupVertexDescriptions();
|
||||
prepareUniformBuffers();
|
||||
prepareNoiseTexture(256, 256, 256);
|
||||
setupDescriptorSetLayout();
|
||||
preparePipelines();
|
||||
setupDescriptorPool();
|
||||
setupDescriptorSet();
|
||||
buildCommandBuffers();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
virtual void render()
|
||||
{
|
||||
if (!prepared)
|
||||
return;
|
||||
draw();
|
||||
if (regenerateNoise)
|
||||
{
|
||||
updateNoiseTexture();
|
||||
}
|
||||
if (!paused)
|
||||
updateUniformBuffers(false);
|
||||
}
|
||||
|
||||
virtual void viewChanged()
|
||||
{
|
||||
updateUniformBuffers();
|
||||
}
|
||||
|
||||
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
||||
{
|
||||
if (overlay->header("Settings")) {
|
||||
if (regenerateNoise) {
|
||||
overlay->text("Generating new noise texture...");
|
||||
} else {
|
||||
if (overlay->button("Generate new texture")) {
|
||||
regenerateNoise = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
VULKAN_EXAMPLE_MAIN()
|
||||
Loading…
Add table
Add a link
Reference in a new issue