Removed redundant query result copy, use result check macros

This commit is contained in:
saschawillems 2016-05-18 19:01:55 +02:00
parent d3f5b81a66
commit c86d929354

View file

@ -143,32 +143,29 @@ public:
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
bufSize); bufSize);
VkResult err = vkCreateBuffer(device, &bufferCreateInfo, nullptr, &queryResult.buffer); // Results are saved in a host visible buffer for easy access by the application
assert(!err); VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &queryResult.buffer));
vkGetBufferMemoryRequirements(device, queryResult.buffer, &memReqs); vkGetBufferMemoryRequirements(device, queryResult.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size; memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex); memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
err = vkAllocateMemory(device, &memAlloc, nullptr, &queryResult.memory); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &queryResult.memory));
assert(!err); VK_CHECK_RESULT(vkBindBufferMemory(device, queryResult.buffer, queryResult.memory, 0));
err = vkBindBufferMemory(device, queryResult.buffer, queryResult.memory, 0);
assert(!err);
// Create query pool // Create query pool
VkQueryPoolCreateInfo queryPoolInfo = {}; VkQueryPoolCreateInfo queryPoolInfo = {};
queryPoolInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO; queryPoolInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
// Query pool will be created for occlusion queries
queryPoolInfo.queryType = VK_QUERY_TYPE_OCCLUSION; queryPoolInfo.queryType = VK_QUERY_TYPE_OCCLUSION;
queryPoolInfo.queryCount = 2; queryPoolInfo.queryCount = 2;
err = vkCreateQueryPool(device, &queryPoolInfo, NULL, &queryPool); VK_CHECK_RESULT(vkCreateQueryPool(device, &queryPoolInfo, NULL, &queryPool));
assert(!err);
} }
// Retrieves the results of the occlusion queries submitted to the command buffer // Retrieves the results of the occlusion queries submitted to the command buffer
void getQueryResults() void getQueryResults()
{ {
VkResult err; // We use vkGetQueryResults to copy the results into a host visible buffer
err = vkGetQueryPoolResults( vkGetQueryPoolResults(
device, device,
queryPool, queryPool,
0, 0,
@ -176,9 +173,10 @@ public:
sizeof(passedSamples), sizeof(passedSamples),
passedSamples, passedSamples,
sizeof(uint64_t), sizeof(uint64_t),
// Store results a 64 bit values and wait until the results have been finished
// If you don't want to wait, you can use VK_QUERY_RESULT_WITH_AVAILABILITY_BIT
// which also returns the state of the result (ready) in the result
VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT); VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT);
assert(!err);
} }
void buildCommandBuffers() void buildCommandBuffers()
@ -198,15 +196,12 @@ public:
renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues; renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{ {
// Set target frame buffer // Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i]; renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
assert(!err);
// Reset query pool // Reset query pool
// Must be done outside of render pass // Must be done outside of render pass
@ -307,48 +302,21 @@ public:
vkCmdEndRenderPass(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]);
// Query results VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
vkCmdCopyQueryPoolResults(
drawCmdBuffers[i],
queryPool,
0,
2,
queryResult.buffer,
0,
sizeof(uint64_t),
VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
} }
} }
void draw() void draw()
{ {
VkResult err; VulkanExampleBase::prepareFrame();
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1; submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
// Submit to queue VulkanExampleBase::submitFrame();
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
// Read query results for displaying in next frame
getQueryResults(); getQueryResults();
} }
@ -405,6 +373,7 @@ public:
{ {
std::vector<VkDescriptorPoolSize> poolSizes = std::vector<VkDescriptorPoolSize> poolSizes =
{ {
// One uniform buffer block for each mesh
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3) vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3)
}; };
@ -414,8 +383,7 @@ public:
poolSizes.data(), poolSizes.data(),
3); 3);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
assert(!vkRes);
} }
void setupDescriptorSetLayout() void setupDescriptorSetLayout()
@ -434,16 +402,14 @@ public:
setLayoutBindings.data(), setLayoutBindings.data(),
setLayoutBindings.size()); setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo( vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout, &descriptorSetLayout,
1); 1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
assert(!err);
} }
void setupDescriptorSets() void setupDescriptorSets()
@ -455,8 +421,7 @@ public:
1); 1);
// Occluder (plane) // Occluder (plane)
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
assert(!vkRes);
std::vector<VkWriteDescriptorSet> writeDescriptorSets = std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{ {
@ -470,16 +435,14 @@ public:
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// teapot // Teapot
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.teapot); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.teapot));
assert(!vkRes);
writeDescriptorSets[0].dstSet = descriptorSets.teapot; writeDescriptorSets[0].dstSet = descriptorSets.teapot;
writeDescriptorSets[0].pBufferInfo = &uniformData.teapot.descriptor; writeDescriptorSets[0].pBufferInfo = &uniformData.teapot.descriptor;
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// sphere // Sphere
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.sphere); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.sphere));
assert(!vkRes);
writeDescriptorSets[0].dstSet = descriptorSets.sphere; writeDescriptorSets[0].dstSet = descriptorSets.sphere;
writeDescriptorSets[0].pBufferInfo = &uniformData.sphere.descriptor; writeDescriptorSets[0].pBufferInfo = &uniformData.sphere.descriptor;
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
@ -558,16 +521,14 @@ public:
pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data(); pipelineCreateInfo.pStages = shaderStages.data();
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
assert(!err);
// Simple pipeline // Basic pipeline for coloring occluded objects
shaderStages[0] = loadShader(getAssetPath() + "shaders/occlusionquery/simple.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[0] = loadShader(getAssetPath() + "shaders/occlusionquery/simple.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/occlusionquery/simple.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/occlusionquery/simple.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
rasterizationState.cullMode = VK_CULL_MODE_NONE; rasterizationState.cullMode = VK_CULL_MODE_NONE;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.simple); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.simple));
assert(!err);
// Visual pipeline for the occluder // Visual pipeline for the occluder
shaderStages[0] = loadShader(getAssetPath() + "shaders/occlusionquery/occluder.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[0] = loadShader(getAssetPath() + "shaders/occlusionquery/occluder.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
@ -579,8 +540,7 @@ public:
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_COLOR; blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_COLOR;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR; blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.occluder); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.occluder));
assert(!err);
} }
// Prepare and initialize uniform buffer containing shader uniforms // Prepare and initialize uniform buffer containing shader uniforms
@ -634,26 +594,23 @@ public:
uboVS.visible = 1.0f; uboVS.visible = 1.0f;
uint8_t *pData; uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData); VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData));
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS)); memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.vsScene.memory); vkUnmapMemory(device, uniformData.vsScene.memory);
// teapot // Teapot
// Toggle color depending on visibility // Toggle color depending on visibility
uboVS.visible = (passedSamples[0] > 0) ? 1.0f : 0.0f; uboVS.visible = (passedSamples[0] > 0) ? 1.0f : 0.0f;
uboVS.model = viewMatrix * rotMatrix * glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, -10.0f)); uboVS.model = viewMatrix * rotMatrix * glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, -10.0f));
err = vkMapMemory(device, uniformData.teapot.memory, 0, sizeof(uboVS), 0, (void **)&pData); VK_CHECK_RESULT(vkMapMemory(device, uniformData.teapot.memory, 0, sizeof(uboVS), 0, (void **)&pData));
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS)); memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.teapot.memory); vkUnmapMemory(device, uniformData.teapot.memory);
// sphere // Sphere
// Toggle color depending on visibility // Toggle color depending on visibility
uboVS.visible = (passedSamples[1] > 0) ? 1.0f : 0.0f; uboVS.visible = (passedSamples[1] > 0) ? 1.0f : 0.0f;
uboVS.model = viewMatrix * rotMatrix * glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, 10.0f)); uboVS.model = viewMatrix * rotMatrix * glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, 10.0f));
err = vkMapMemory(device, uniformData.sphere.memory, 0, sizeof(uboVS), 0, (void **)&pData); VK_CHECK_RESULT(vkMapMemory(device, uniformData.sphere.memory, 0, sizeof(uboVS), 0, (void **)&pData));
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS)); memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.sphere.memory); vkUnmapMemory(device, uniformData.sphere.memory);
} }
@ -677,13 +634,12 @@ public:
{ {
if (!prepared) if (!prepared)
return; return;
vkDeviceWaitIdle(device);
draw(); draw();
vkDeviceWaitIdle(device);
} }
virtual void viewChanged() virtual void viewChanged()
{ {
vkDeviceWaitIdle(device);
updateUniformBuffers(); updateUniformBuffers();
std::cout << "Passed samples : Teapot = " << passedSamples[0] << " / Sphere = " << passedSamples[1] <<"\n"; std::cout << "Passed samples : Teapot = " << passedSamples[0] << " / Sphere = " << passedSamples[1] <<"\n";
} }