Removed redundant query result copy, use result check macros

This commit is contained in:
saschawillems 2016-05-18 19:01:55 +02:00
parent d3f5b81a66
commit c86d929354

View file

@ -143,32 +143,29 @@ public:
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
bufSize);
VkResult err = vkCreateBuffer(device, &bufferCreateInfo, nullptr, &queryResult.buffer);
assert(!err);
// Results are saved in a host visible buffer for easy access by the application
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &queryResult.buffer));
vkGetBufferMemoryRequirements(device, queryResult.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &queryResult.memory);
assert(!err);
err = vkBindBufferMemory(device, queryResult.buffer, queryResult.memory, 0);
assert(!err);
memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &queryResult.memory));
VK_CHECK_RESULT(vkBindBufferMemory(device, queryResult.buffer, queryResult.memory, 0));
// Create query pool
VkQueryPoolCreateInfo queryPoolInfo = {};
queryPoolInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
// Query pool will be created for occlusion queries
queryPoolInfo.queryType = VK_QUERY_TYPE_OCCLUSION;
queryPoolInfo.queryCount = 2;
err = vkCreateQueryPool(device, &queryPoolInfo, NULL, &queryPool);
assert(!err);
VK_CHECK_RESULT(vkCreateQueryPool(device, &queryPoolInfo, NULL, &queryPool));
}
// Retrieves the results of the occlusion queries submitted to the command buffer
void getQueryResults()
{
VkResult err;
err = vkGetQueryPoolResults(
// We use vkGetQueryResults to copy the results into a host visible buffer
vkGetQueryPoolResults(
device,
queryPool,
0,
@ -176,9 +173,10 @@ public:
sizeof(passedSamples),
passedSamples,
sizeof(uint64_t),
// Store results a 64 bit values and wait until the results have been finished
// If you don't want to wait, you can use VK_QUERY_RESULT_WITH_AVAILABILITY_BIT
// which also returns the state of the result (ready) in the result
VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT);
assert(!err);
}
void buildCommandBuffers()
@ -198,15 +196,12 @@ public:
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Reset query pool
// Must be done outside of render pass
@ -307,48 +302,21 @@ public:
vkCmdEndRenderPass(drawCmdBuffers[i]);
// Query results
vkCmdCopyQueryPoolResults(
drawCmdBuffers[i],
queryPool,
0,
2,
queryResult.buffer,
0,
sizeof(uint64_t),
VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void draw()
{
VkResult err;
VulkanExampleBase::prepareFrame();
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
// Submit to queue
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
VulkanExampleBase::submitFrame();
// Read query results for displaying in next frame
getQueryResults();
}
@ -405,6 +373,7 @@ public:
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
// One uniform buffer block for each mesh
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3)
};
@ -414,8 +383,7 @@ public:
poolSizes.data(),
3);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
@ -434,16 +402,14 @@ public:
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSets()
@ -455,8 +421,7 @@ public:
1);
// Occluder (plane)
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
@ -470,16 +435,14 @@ public:
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// teapot
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.teapot);
assert(!vkRes);
// Teapot
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.teapot));
writeDescriptorSets[0].dstSet = descriptorSets.teapot;
writeDescriptorSets[0].pBufferInfo = &uniformData.teapot.descriptor;
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// sphere
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.sphere);
assert(!vkRes);
// Sphere
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.sphere));
writeDescriptorSets[0].dstSet = descriptorSets.sphere;
writeDescriptorSets[0].pBufferInfo = &uniformData.sphere.descriptor;
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
@ -558,16 +521,14 @@ public:
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
assert(!err);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
// Simple pipeline
// Basic pipeline for coloring occluded objects
shaderStages[0] = loadShader(getAssetPath() + "shaders/occlusionquery/simple.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/occlusionquery/simple.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
rasterizationState.cullMode = VK_CULL_MODE_NONE;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.simple);
assert(!err);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.simple));
// Visual pipeline for the occluder
shaderStages[0] = loadShader(getAssetPath() + "shaders/occlusionquery/occluder.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
@ -579,8 +540,7 @@ public:
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_COLOR;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.occluder);
assert(!err);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.occluder));
}
// Prepare and initialize uniform buffer containing shader uniforms
@ -634,26 +594,23 @@ public:
uboVS.visible = 1.0f;
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData));
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.vsScene.memory);
// teapot
// Teapot
// Toggle color depending on visibility
uboVS.visible = (passedSamples[0] > 0) ? 1.0f : 0.0f;
uboVS.model = viewMatrix * rotMatrix * glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, -10.0f));
err = vkMapMemory(device, uniformData.teapot.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
VK_CHECK_RESULT(vkMapMemory(device, uniformData.teapot.memory, 0, sizeof(uboVS), 0, (void **)&pData));
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.teapot.memory);
// sphere
// Sphere
// Toggle color depending on visibility
uboVS.visible = (passedSamples[1] > 0) ? 1.0f : 0.0f;
uboVS.model = viewMatrix * rotMatrix * glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, 10.0f));
err = vkMapMemory(device, uniformData.sphere.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
VK_CHECK_RESULT(vkMapMemory(device, uniformData.sphere.memory, 0, sizeof(uboVS), 0, (void **)&pData));
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.sphere.memory);
}
@ -677,13 +634,12 @@ public:
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
}
virtual void viewChanged()
{
vkDeviceWaitIdle(device);
updateUniformBuffers();
std::cout << "Passed samples : Teapot = " << passedSamples[0] << " / Sphere = " << passedSamples[1] <<"\n";
}