Started working on ray tracing intersection shader example
This commit is contained in:
parent
a048bc2635
commit
ebc4127472
8 changed files with 685 additions and 0 deletions
604
examples/raytracingintersection/raytracingintersection.cpp
Normal file
604
examples/raytracingintersection/raytracingintersection.cpp
Normal file
|
|
@ -0,0 +1,604 @@
|
|||
/*
|
||||
* Vulkan Example - Hardware accelerated ray tracing intersection shader samples
|
||||
*
|
||||
* Copyright (C) 2023 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This sample uses intersection shaders for doing prodcedural ray traced geometry
|
||||
* Instead of passing actual geometry, this samples only passes bounding boxes and sphere descriptions
|
||||
* The bounding boxes are used for the ray traversal and the sphere intersections are done
|
||||
* within the intersection shader
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
#include "VulkanRaytracingSample.h"
|
||||
|
||||
class VulkanExample : public VulkanRaytracingSample
|
||||
{
|
||||
public:
|
||||
AccelerationStructure bottomLevelAS;
|
||||
AccelerationStructure topLevelAS;
|
||||
|
||||
std::vector<VkRayTracingShaderGroupCreateInfoKHR> shaderGroups{};
|
||||
struct ShaderBindingTables {
|
||||
ShaderBindingTable raygen;
|
||||
ShaderBindingTable miss;
|
||||
ShaderBindingTable hit;
|
||||
} shaderBindingTables;
|
||||
|
||||
struct UniformData {
|
||||
glm::mat4 viewInverse;
|
||||
glm::mat4 projInverse;
|
||||
glm::vec4 lightPos;
|
||||
} uniformData;
|
||||
vks::Buffer ubo;
|
||||
|
||||
VkPipeline pipeline;
|
||||
VkPipelineLayout pipelineLayout;
|
||||
VkDescriptorSet descriptorSet;
|
||||
VkDescriptorSetLayout descriptorSetLayout;
|
||||
|
||||
struct Sphere {
|
||||
glm::vec3 center;
|
||||
float radius;
|
||||
glm::vec4 color;
|
||||
};
|
||||
|
||||
struct AABB {
|
||||
glm::vec3 min;
|
||||
glm::vec3 max;
|
||||
};
|
||||
|
||||
vks::Buffer spheresBuffer;
|
||||
vks::Buffer aabbsBuffer;
|
||||
uint32_t aabbCount{ 0 };
|
||||
|
||||
// This sample is derived from an extended base class that saves most of the ray tracing setup boiler plate
|
||||
VulkanExample() : VulkanRaytracingSample()
|
||||
{
|
||||
title = "Ray tracing intersection shaders";
|
||||
timerSpeed *= 0.25f;
|
||||
camera.type = Camera::CameraType::lookat;
|
||||
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
|
||||
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
|
||||
camera.setTranslation(glm::vec3(0.0f, 0.0f, -10.0f));
|
||||
enableExtensions();
|
||||
}
|
||||
|
||||
~VulkanExample()
|
||||
{
|
||||
vkDestroyPipeline(device, pipeline, nullptr);
|
||||
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
||||
deleteStorageImage();
|
||||
deleteAccelerationStructure(bottomLevelAS);
|
||||
deleteAccelerationStructure(topLevelAS);
|
||||
shaderBindingTables.raygen.destroy();
|
||||
shaderBindingTables.miss.destroy();
|
||||
shaderBindingTables.hit.destroy();
|
||||
ubo.destroy();
|
||||
}
|
||||
|
||||
void createBuffers()
|
||||
{
|
||||
// We'll be using two buffers to describe the procedural geometry
|
||||
|
||||
// A buffer with sphere descriptions (center, radius, material) that'll be passed to the ray tracing shaders as a shader storage buffer object
|
||||
std::vector<Sphere> spheres{};
|
||||
spheres.push_back({ glm::vec3(0.0f), 2.5f, glm::vec4(1.0f, 0.0f, 0.0f, 1.0f) });
|
||||
spheres.push_back({ glm::vec3(2.0f), 1.5f, glm::vec4(1.0f, 1.0f, 0.0f, 1.0f) });
|
||||
|
||||
// A buffer with the (axis aligned) bounding boxes of our sphere, which is used during the ray tracing traversal for hit detection
|
||||
std::vector<AABB> aabbs{};
|
||||
for (auto& sphere : spheres) {
|
||||
aabbs.push_back({ sphere.center - glm::vec3(sphere.radius), sphere.center + glm::vec3(sphere.radius) });
|
||||
}
|
||||
aabbCount = static_cast<uint32_t>(aabbs.size());
|
||||
|
||||
// Copy the buffer to the device for performance reasons
|
||||
vks::Buffer stagingBuffer{};
|
||||
VkBufferUsageFlags usageFlags = VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
||||
|
||||
// Spheres
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, sizeof(Sphere)* spheres.size(), spheres.data()));
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &spheresBuffer, sizeof(Sphere)* spheres.size()));
|
||||
vulkanDevice->copyBuffer(&stagingBuffer, &spheresBuffer, queue);
|
||||
stagingBuffer.destroy();
|
||||
|
||||
// AABBs
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, sizeof(AABB)* aabbs.size(), aabbs.data()));
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &aabbsBuffer, sizeof(AABB)* aabbs.size()));
|
||||
vulkanDevice->copyBuffer(&stagingBuffer, &aabbsBuffer, queue);
|
||||
stagingBuffer.destroy();
|
||||
}
|
||||
|
||||
/*
|
||||
Create the bottom level acceleration structure only containing axis aligned bounding boxes for our procedural geometry
|
||||
*/
|
||||
void createBottomLevelAccelerationStructure()
|
||||
{
|
||||
// Build
|
||||
VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR();
|
||||
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
|
||||
// Instead of providing actual geometry (e.g. triangles), we only provide the axis aligned bounding boxes (AABBs) of the spheres
|
||||
// The data for the actual spheres is passed elsewhere as a shader storage buffer object
|
||||
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_AABBS_KHR;
|
||||
accelerationStructureGeometry.geometry.aabbs.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_AABBS_DATA_KHR;
|
||||
accelerationStructureGeometry.geometry.aabbs.data.deviceAddress = getBufferDeviceAddress(aabbsBuffer.buffer);
|
||||
accelerationStructureGeometry.geometry.aabbs.stride = sizeof(AABB);
|
||||
|
||||
// Get size info
|
||||
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
|
||||
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
|
||||
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
|
||||
accelerationStructureBuildGeometryInfo.geometryCount = 1;
|
||||
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
|
||||
|
||||
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR();
|
||||
vkGetAccelerationStructureBuildSizesKHR(
|
||||
device,
|
||||
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
|
||||
&accelerationStructureBuildGeometryInfo,
|
||||
&aabbCount,
|
||||
&accelerationStructureBuildSizesInfo);
|
||||
|
||||
createAccelerationStructure(bottomLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR, accelerationStructureBuildSizesInfo);
|
||||
|
||||
// Create a small scratch buffer used during build of the bottom level acceleration structure
|
||||
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
|
||||
|
||||
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
|
||||
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
|
||||
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
|
||||
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
|
||||
accelerationBuildGeometryInfo.dstAccelerationStructure = bottomLevelAS.handle;
|
||||
accelerationBuildGeometryInfo.geometryCount = 1;
|
||||
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
|
||||
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
|
||||
|
||||
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
|
||||
accelerationStructureBuildRangeInfo.primitiveCount = aabbCount;
|
||||
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
|
||||
|
||||
// Build the acceleration structure on the device via a one-time command buffer submission
|
||||
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
|
||||
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||
vkCmdBuildAccelerationStructuresKHR(
|
||||
commandBuffer,
|
||||
1,
|
||||
&accelerationBuildGeometryInfo,
|
||||
accelerationBuildStructureRangeInfos.data());
|
||||
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
|
||||
|
||||
deleteScratchBuffer(scratchBuffer);
|
||||
}
|
||||
|
||||
/*
|
||||
The top level acceleration structure contains the scene's object instances
|
||||
*/
|
||||
void createTopLevelAccelerationStructure()
|
||||
{
|
||||
VkTransformMatrixKHR transformMatrix = {
|
||||
1.0f, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, 1.0f, 0.0f, 0.0f,
|
||||
0.0f, 0.0f, 1.0f, 0.0f };
|
||||
|
||||
VkAccelerationStructureInstanceKHR instance{};
|
||||
instance.transform = transformMatrix;
|
||||
instance.instanceCustomIndex = 0;
|
||||
instance.mask = 0xFF;
|
||||
instance.instanceShaderBindingTableRecordOffset = 0;
|
||||
instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
|
||||
instance.accelerationStructureReference = bottomLevelAS.deviceAddress;
|
||||
|
||||
// Buffer for instance data
|
||||
vks::Buffer instancesBuffer;
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&instancesBuffer,
|
||||
sizeof(VkAccelerationStructureInstanceKHR),
|
||||
&instance));
|
||||
|
||||
VkDeviceOrHostAddressConstKHR instanceDataDeviceAddress{};
|
||||
instanceDataDeviceAddress.deviceAddress = getBufferDeviceAddress(instancesBuffer.buffer);
|
||||
|
||||
VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR();
|
||||
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR;
|
||||
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
|
||||
accelerationStructureGeometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR;
|
||||
accelerationStructureGeometry.geometry.instances.arrayOfPointers = VK_FALSE;
|
||||
accelerationStructureGeometry.geometry.instances.data = instanceDataDeviceAddress;
|
||||
|
||||
// Get size info
|
||||
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
|
||||
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
|
||||
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
|
||||
accelerationStructureBuildGeometryInfo.geometryCount = 1;
|
||||
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
|
||||
|
||||
uint32_t primitive_count = 1;
|
||||
|
||||
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR();
|
||||
vkGetAccelerationStructureBuildSizesKHR(
|
||||
device,
|
||||
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
|
||||
&accelerationStructureBuildGeometryInfo,
|
||||
&primitive_count,
|
||||
&accelerationStructureBuildSizesInfo);
|
||||
|
||||
createAccelerationStructure(topLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, accelerationStructureBuildSizesInfo);
|
||||
|
||||
// Create a small scratch buffer used during build of the top level acceleration structure
|
||||
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
|
||||
|
||||
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
|
||||
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
|
||||
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
|
||||
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
|
||||
accelerationBuildGeometryInfo.dstAccelerationStructure = topLevelAS.handle;
|
||||
accelerationBuildGeometryInfo.geometryCount = 1;
|
||||
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
|
||||
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
|
||||
|
||||
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
|
||||
accelerationStructureBuildRangeInfo.primitiveCount = 1;
|
||||
accelerationStructureBuildRangeInfo.primitiveOffset = 0;
|
||||
accelerationStructureBuildRangeInfo.firstVertex = 0;
|
||||
accelerationStructureBuildRangeInfo.transformOffset = 0;
|
||||
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
|
||||
|
||||
// Build the acceleration structure on the device via a one-time command buffer submission
|
||||
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
|
||||
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||
vkCmdBuildAccelerationStructuresKHR(
|
||||
commandBuffer,
|
||||
1,
|
||||
&accelerationBuildGeometryInfo,
|
||||
accelerationBuildStructureRangeInfos.data());
|
||||
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
|
||||
|
||||
deleteScratchBuffer(scratchBuffer);
|
||||
instancesBuffer.destroy();
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Create the Shader Binding Tables that binds the programs and top-level acceleration structure
|
||||
|
||||
SBT Layout used in this sample:
|
||||
|
||||
/-----------\
|
||||
| raygen |
|
||||
|-----------|
|
||||
| miss |
|
||||
|-----------|
|
||||
| hit + int |
|
||||
\-----------/
|
||||
|
||||
*/
|
||||
void createShaderBindingTables() {
|
||||
const uint32_t handleSize = rayTracingPipelineProperties.shaderGroupHandleSize;
|
||||
const uint32_t handleSizeAligned = vks::tools::alignedSize(rayTracingPipelineProperties.shaderGroupHandleSize, rayTracingPipelineProperties.shaderGroupHandleAlignment);
|
||||
const uint32_t groupCount = static_cast<uint32_t>(shaderGroups.size());
|
||||
const uint32_t sbtSize = groupCount * handleSizeAligned;
|
||||
|
||||
std::vector<uint8_t> shaderHandleStorage(sbtSize);
|
||||
VK_CHECK_RESULT(vkGetRayTracingShaderGroupHandlesKHR(device, pipeline, 0, groupCount, sbtSize, shaderHandleStorage.data()));
|
||||
|
||||
createShaderBindingTable(shaderBindingTables.raygen, 1);
|
||||
createShaderBindingTable(shaderBindingTables.miss, 1);
|
||||
createShaderBindingTable(shaderBindingTables.hit, 1);
|
||||
|
||||
// Copy handles
|
||||
memcpy(shaderBindingTables.raygen.mapped, shaderHandleStorage.data(), handleSize);
|
||||
memcpy(shaderBindingTables.miss.mapped, shaderHandleStorage.data() + handleSizeAligned, handleSize);
|
||||
memcpy(shaderBindingTables.hit.mapped, shaderHandleStorage.data() + handleSizeAligned * 2, handleSize);
|
||||
}
|
||||
|
||||
/*
|
||||
Create the descriptor sets used for the ray tracing dispatch
|
||||
*/
|
||||
void createDescriptorSets()
|
||||
{
|
||||
std::vector<VkDescriptorPoolSize> poolSizes = {
|
||||
{ VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1 },
|
||||
{ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1 },
|
||||
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1 },
|
||||
{ VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2 }
|
||||
};
|
||||
VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, nullptr, &descriptorPool));
|
||||
|
||||
VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSet));
|
||||
|
||||
VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo = vks::initializers::writeDescriptorSetAccelerationStructureKHR();
|
||||
descriptorAccelerationStructureInfo.accelerationStructureCount = 1;
|
||||
descriptorAccelerationStructureInfo.pAccelerationStructures = &topLevelAS.handle;
|
||||
|
||||
VkWriteDescriptorSet accelerationStructureWrite{};
|
||||
accelerationStructureWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
||||
// The specialized acceleration structure descriptor has to be chained
|
||||
accelerationStructureWrite.pNext = &descriptorAccelerationStructureInfo;
|
||||
accelerationStructureWrite.dstSet = descriptorSet;
|
||||
accelerationStructureWrite.dstBinding = 0;
|
||||
accelerationStructureWrite.descriptorCount = 1;
|
||||
accelerationStructureWrite.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
|
||||
|
||||
// We pass the sphere descriptions as shader storage buffer, so the ray tracing shaders can source properties from it
|
||||
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
|
||||
VkDescriptorBufferInfo spheresBufferDescriptor{ spheresBuffer.buffer, 0, VK_WHOLE_SIZE };
|
||||
|
||||
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
|
||||
// Binding 0: Top level acceleration structure
|
||||
accelerationStructureWrite,
|
||||
// Binding 1: Ray tracing result image
|
||||
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor),
|
||||
// Binding 2: Uniform data
|
||||
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &ubo.descriptor),
|
||||
// Binding 3: Spheres buffer
|
||||
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 3, &spheresBufferDescriptor),
|
||||
};
|
||||
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, VK_NULL_HANDLE);
|
||||
}
|
||||
|
||||
/*
|
||||
Create our ray tracing pipeline
|
||||
*/
|
||||
void createRayTracingPipeline()
|
||||
{
|
||||
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
||||
// Binding 0: Acceleration structure
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, 0),
|
||||
// Binding 1: Storage image
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_RAYGEN_BIT_KHR, 1),
|
||||
// Binding 2: Uniform buffer
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR, 2),
|
||||
// Binding 3: Spheres buffer
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR, 3),
|
||||
};
|
||||
|
||||
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayout));
|
||||
|
||||
VkPipelineLayoutCreateInfo pPipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCI, nullptr, &pipelineLayout));
|
||||
|
||||
/*
|
||||
Setup ray tracing shader groups
|
||||
*/
|
||||
std::vector<VkPipelineShaderStageCreateInfo> shaderStages;
|
||||
|
||||
// Ray generation group
|
||||
{
|
||||
shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/raygen.rgen.spv", VK_SHADER_STAGE_RAYGEN_BIT_KHR));
|
||||
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
|
||||
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
|
||||
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
|
||||
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
||||
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroups.push_back(shaderGroup);
|
||||
}
|
||||
|
||||
// Miss group
|
||||
{
|
||||
shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/miss.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR));
|
||||
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
|
||||
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
|
||||
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
|
||||
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
||||
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroups.push_back(shaderGroup);
|
||||
}
|
||||
|
||||
// Closest hit group (procedural)
|
||||
{
|
||||
shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/closesthit.rchit.spv", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR));
|
||||
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
|
||||
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
|
||||
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR;
|
||||
shaderGroup.generalShader = VK_SHADER_UNUSED_KHR;
|
||||
shaderGroup.closestHitShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
||||
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
|
||||
// This group als uses an intersection shader for proedural geometry (see interseciton.rint for details)
|
||||
shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/intersection.rint.spv", VK_SHADER_STAGE_INTERSECTION_BIT_KHR));
|
||||
shaderGroup.intersectionShader = static_cast<uint32_t>(shaderStages.size()) - 1;
|
||||
shaderGroups.push_back(shaderGroup);
|
||||
}
|
||||
|
||||
VkRayTracingPipelineCreateInfoKHR rayTracingPipelineCI = vks::initializers::rayTracingPipelineCreateInfoKHR();
|
||||
rayTracingPipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
||||
rayTracingPipelineCI.pStages = shaderStages.data();
|
||||
rayTracingPipelineCI.groupCount = static_cast<uint32_t>(shaderGroups.size());
|
||||
rayTracingPipelineCI.pGroups = shaderGroups.data();
|
||||
rayTracingPipelineCI.maxPipelineRayRecursionDepth = 2;
|
||||
rayTracingPipelineCI.layout = pipelineLayout;
|
||||
VK_CHECK_RESULT(vkCreateRayTracingPipelinesKHR(device, VK_NULL_HANDLE, VK_NULL_HANDLE, 1, &rayTracingPipelineCI, nullptr, &pipeline));
|
||||
}
|
||||
|
||||
/*
|
||||
Create the uniform buffer used to pass matrices to the ray tracing ray generation shader
|
||||
*/
|
||||
void createUniformBuffer()
|
||||
{
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&ubo,
|
||||
sizeof(uniformData),
|
||||
&uniformData));
|
||||
VK_CHECK_RESULT(ubo.map());
|
||||
|
||||
updateUniformBuffers();
|
||||
}
|
||||
|
||||
/*
|
||||
If the window has been resized, we need to recreate the storage image and it's descriptor
|
||||
*/
|
||||
void handleResize()
|
||||
{
|
||||
// Recreate image
|
||||
createStorageImage(swapChain.colorFormat, { width, height, 1 });
|
||||
// Update descriptor
|
||||
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
|
||||
VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor);
|
||||
vkUpdateDescriptorSets(device, 1, &resultImageWrite, 0, VK_NULL_HANDLE);
|
||||
resized = false;
|
||||
}
|
||||
|
||||
/*
|
||||
Command buffer generation
|
||||
*/
|
||||
void buildCommandBuffers()
|
||||
{
|
||||
if (resized)
|
||||
{
|
||||
handleResize();
|
||||
}
|
||||
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
||||
|
||||
VkImageSubresourceRange subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
||||
|
||||
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
||||
{
|
||||
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
||||
|
||||
/*
|
||||
Dispatch the ray tracing commands
|
||||
*/
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline);
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0);
|
||||
|
||||
VkStridedDeviceAddressRegionKHR emptySbtEntry = {};
|
||||
vkCmdTraceRaysKHR(
|
||||
drawCmdBuffers[i],
|
||||
&shaderBindingTables.raygen.stridedDeviceAddressRegion,
|
||||
&shaderBindingTables.miss.stridedDeviceAddressRegion,
|
||||
&shaderBindingTables.hit.stridedDeviceAddressRegion,
|
||||
&emptySbtEntry,
|
||||
width,
|
||||
height,
|
||||
1);
|
||||
|
||||
/*
|
||||
Copy ray tracing output to swap chain image
|
||||
*/
|
||||
|
||||
// Prepare current swap chain image as transfer destination
|
||||
vks::tools::setImageLayout(
|
||||
drawCmdBuffers[i],
|
||||
swapChain.images[i],
|
||||
VK_IMAGE_LAYOUT_UNDEFINED,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
||||
subresourceRange);
|
||||
|
||||
// Prepare ray tracing output image as transfer source
|
||||
vks::tools::setImageLayout(
|
||||
drawCmdBuffers[i],
|
||||
storageImage.image,
|
||||
VK_IMAGE_LAYOUT_GENERAL,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
||||
subresourceRange);
|
||||
|
||||
VkImageCopy copyRegion{};
|
||||
copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
|
||||
copyRegion.srcOffset = { 0, 0, 0 };
|
||||
copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
|
||||
copyRegion.dstOffset = { 0, 0, 0 };
|
||||
copyRegion.extent = { width, height, 1 };
|
||||
vkCmdCopyImage(drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region);
|
||||
|
||||
// Transition swap chain image back for presentation
|
||||
vks::tools::setImageLayout(
|
||||
drawCmdBuffers[i],
|
||||
swapChain.images[i],
|
||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
||||
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
|
||||
subresourceRange);
|
||||
|
||||
// Transition ray tracing output image back to general layout
|
||||
vks::tools::setImageLayout(
|
||||
drawCmdBuffers[i],
|
||||
storageImage.image,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
||||
VK_IMAGE_LAYOUT_GENERAL,
|
||||
subresourceRange);
|
||||
|
||||
drawUI(drawCmdBuffers[i], frameBuffers[i]);
|
||||
|
||||
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
||||
}
|
||||
}
|
||||
|
||||
void updateUniformBuffers()
|
||||
{
|
||||
uniformData.projInverse = glm::inverse(camera.matrices.perspective);
|
||||
uniformData.viewInverse = glm::inverse(camera.matrices.view);
|
||||
uniformData.lightPos = glm::vec4(cos(glm::radians(timer * 360.0f)) * 40.0f, -50.0f + sin(glm::radians(timer * 360.0f)) * 20.0f, 25.0f + sin(glm::radians(timer * 360.0f)) * 5.0f, 0.0f);
|
||||
// Pass the vertex size to the shader for unpacking vertices
|
||||
//uniformData.vertexSize = sizeof(vkglTF::Vertex);
|
||||
memcpy(ubo.mapped, &uniformData, sizeof(uniformData));
|
||||
}
|
||||
|
||||
void getEnabledFeatures()
|
||||
{
|
||||
// Enable features required for ray tracing using feature chaining via pNext
|
||||
enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES;
|
||||
enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE;
|
||||
|
||||
enabledRayTracingPipelineFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR;
|
||||
enabledRayTracingPipelineFeatures.rayTracingPipeline = VK_TRUE;
|
||||
enabledRayTracingPipelineFeatures.pNext = &enabledBufferDeviceAddresFeatures;
|
||||
|
||||
enabledAccelerationStructureFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR;
|
||||
enabledAccelerationStructureFeatures.accelerationStructure = VK_TRUE;
|
||||
enabledAccelerationStructureFeatures.pNext = &enabledRayTracingPipelineFeatures;
|
||||
|
||||
deviceCreatepNextChain = &enabledAccelerationStructureFeatures;
|
||||
}
|
||||
|
||||
void prepare()
|
||||
{
|
||||
VulkanRaytracingSample::prepare();
|
||||
|
||||
createBuffers();
|
||||
|
||||
// Create the acceleration structures used to render the ray traced scene
|
||||
createBottomLevelAccelerationStructure();
|
||||
createTopLevelAccelerationStructure();
|
||||
|
||||
createStorageImage(swapChain.colorFormat, { width, height, 1 });
|
||||
createUniformBuffer();
|
||||
createRayTracingPipeline();
|
||||
createShaderBindingTables();
|
||||
createDescriptorSets();
|
||||
buildCommandBuffers();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
void draw()
|
||||
{
|
||||
VulkanExampleBase::prepareFrame();
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
||||
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
||||
VulkanExampleBase::submitFrame();
|
||||
}
|
||||
|
||||
virtual void render()
|
||||
{
|
||||
if (!prepared)
|
||||
return;
|
||||
draw();
|
||||
if (!paused || camera.updated)
|
||||
updateUniformBuffers();
|
||||
}
|
||||
};
|
||||
|
||||
VULKAN_EXAMPLE_MAIN()
|
||||
Loading…
Add table
Add a link
Reference in a new issue