procedural-3d-engine/shadowmappingomni/shadowmappingomni.cpp

1161 lines
No EOL
37 KiB
C++

/*
* Vulkan Example - Omni directional shadows using a dynamic cube map
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Texture properties
#define TEX_DIM 1024
#define TEX_FILTER VK_FILTER_LINEAR
// Offscreen frame buffer properties
#define FB_DIM TEX_DIM
#define FB_COLOR_FORMAT VK_FORMAT_R32_SFLOAT
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_UV,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
vkMeshLoader::VERTEX_LAYOUT_NORMAL
};
class VulkanExample : public VulkanExampleBase
{
public:
bool displayCubeMap = false;
float zNear = 0.1f;
float zFar = 1024.0f;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkMeshLoader::MeshBuffer skybox;
vkMeshLoader::MeshBuffer scene;
} meshes;
struct {
vkTools::UniformData scene;
vkTools::UniformData offscreen;
} uniformData;
struct {
glm::mat4 projection;
glm::mat4 model;
} uboVSquad;
glm::vec4 lightPos = glm::vec4(0.0f, -25.0f, 0.0f, 1.0);
struct {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::vec4 lightPos;
} uboVSscene;
struct {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::vec4 lightPos;
} uboOffscreenVS;
struct {
VkPipeline scene;
VkPipeline offscreen;
VkPipeline cubeMap;
} pipelines;
struct {
VkPipelineLayout scene;
VkPipelineLayout offscreen;
} pipelineLayouts;
struct {
VkDescriptorSet scene;
VkDescriptorSet offscreen;
} descriptorSets;
VkDescriptorSetLayout descriptorSetLayout;
vkTools::VulkanTexture shadowCubeMap;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct FrameBuffer {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color, depth;
} offScreenFrameBuf;
VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -175.0f;
zoomSpeed = 10.0f;
timerSpeed *= 0.25f;
rotation = { -20.5f, -673.0f, 0.0f };
title = "Vulkan Example - Point light shadows";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
// Cube map
vkDestroyImageView(device, shadowCubeMap.view, nullptr);
vkDestroyImage(device, shadowCubeMap.image, nullptr);
vkDestroySampler(device, shadowCubeMap.sampler, nullptr);
vkFreeMemory(device, shadowCubeMap.deviceMemory, nullptr);
// Frame buffer
// Color attachment
vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr);
// Depth attachment
vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr);
vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr);
// Pipelibes
vkDestroyPipeline(device, pipelines.scene, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
vkDestroyPipeline(device, pipelines.cubeMap, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.scene, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Meshes
vkMeshLoader::freeMeshBufferResources(device, &meshes.scene);
vkMeshLoader::freeMeshBufferResources(device, &meshes.skybox);
// Uniform buffers
vkTools::destroyUniformData(device, &uniformData.offscreen);
vkTools::destroyUniformData(device, &uniformData.scene);
vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer);
}
void prepareCubeMap()
{
VkResult err;
shadowCubeMap.width = TEX_DIM;
shadowCubeMap.height = TEX_DIM;
// 32 bit float format for higher precision
VkFormat format = VK_FORMAT_R32_SFLOAT;
// Cube map image description
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { shadowCubeMap.width, shadowCubeMap.height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 6;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
// Allocate command buffer for image copies and layouts
VkCommandBuffer cmdBuffer;
VkCommandBufferAllocateInfo cmdBufAlllocatInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
err = vkAllocateCommandBuffers(device, &cmdBufAlllocatInfo, &cmdBuffer);
assert(!err);
VkCommandBufferBeginInfo cmdBufInfo =
vkTools::initializers::commandBufferBeginInfo();
err = vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo);
assert(!err);
// Create cube map image
err = vkCreateImage(device, &imageCreateInfo, nullptr, &shadowCubeMap.image);
assert(!err);
vkGetImageMemoryRequirements(device, shadowCubeMap.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &shadowCubeMap.deviceMemory);
assert(!err);
err = vkBindImageMemory(device, shadowCubeMap.image, shadowCubeMap.deviceMemory, 0);
assert(!err);
// Image barrier for optimal image (target)
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = 6;
vkTools::setImageLayout(
cmdBuffer,
shadowCubeMap.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
subresourceRange);
err = vkEndCommandBuffer(cmdBuffer);
assert(!err);
VkFence nullFence = { VK_NULL_HANDLE };
// Submit command buffer to graphis queue
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, nullFence);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = TEX_FILTER;
sampler.minFilter = TEX_FILTER;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &shadowCubeMap.sampler);
assert(!err);
// Create image view
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = 6;
view.image = shadowCubeMap.image;
err = vkCreateImageView(device, &view, nullptr, &shadowCubeMap.view);
assert(!err);
}
// Prepare a new framebuffer for offscreen rendering
// The contents of this framebuffer are then
// copied to the different cube map faces
void prepareOffscreenFramebuffer()
{
offScreenFrameBuf.width = FB_DIM;
offScreenFrameBuf.height = FB_DIM;
VkFormat fbColorFormat = FB_COLOR_FORMAT;
// Find a suitable depth format
VkFormat fbDepthFormat;
VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat);
assert(validDepthFormat);
VkResult err;
createSetupCommandBuffer();
// Color attachment
VkImageCreateInfo image = vkTools::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = fbColorFormat;
image.extent.width = offScreenFrameBuf.width;
image.extent.height = offScreenFrameBuf.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
// Image of the framebuffer is blit source
image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image.flags = 0;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = fbColorFormat;
colorImageView.flags = 0;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
VkMemoryRequirements memReqs;
err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.color.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem);
assert(!err);
err = vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0);
assert(!err);
vkTools::setImageLayout(
setupCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
colorImageView.image = offScreenFrameBuf.color.image;
err = vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view);
assert(!err);
// Depth stencil attachment
image.format = fbDepthFormat;
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = fbDepthFormat;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.depth.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem);
assert(!err);
err = vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0);
assert(!err);
vkTools::setImageLayout(
setupCmdBuffer,
offScreenFrameBuf.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
flushSetupCommandBuffer();
depthStencilView.image = offScreenFrameBuf.depth.image;
err = vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view);
assert(!err);
VkImageView attachments[2];
attachments[0] = offScreenFrameBuf.color.view;
attachments[1] = offScreenFrameBuf.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = {};
fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbufCreateInfo.pNext = NULL;
fbufCreateInfo.renderPass = renderPass;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.width = offScreenFrameBuf.width;
fbufCreateInfo.height = offScreenFrameBuf.height;
fbufCreateInfo.layers = 1;
err = vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer);
assert(!err);
}
// Updates a single cube map face
// Renders the scene with face's view and does
// a copy from framebuffer to cube face
// Uses push constants for quick update of
// view matrix for the current cube map face
void updateCubeFace(uint32_t faceIndex)
{
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
// Reuse render pass from example pass
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width;
renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
// Update view matrix via push constant
glm::mat4 viewMatrix = glm::mat4();
switch (faceIndex)
{
case 0: // POSITIVE_X
viewMatrix = glm::rotate(viewMatrix, glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f));
viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 1: // NEGATIVE_X
viewMatrix = glm::rotate(viewMatrix, glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f));
viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 2: // POSITIVE_Y
viewMatrix = glm::rotate(viewMatrix, glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 3: // NEGATIVE_Y
viewMatrix = glm::rotate(viewMatrix, glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 4: // POSITIVE_Z
viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f));
break;
case 5: // NEGATIVE_Z
viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f));
break;
}
// Render scene from cube face's point of view
vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
// Update shader push constant block
// Contains current face view matrix
vkCmdPushConstants(
offScreenCmdBuffer,
pipelineLayouts.offscreen,
VK_SHADER_STAGE_VERTEX_BIT,
0,
sizeof(glm::mat4),
&viewMatrix);
vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.scene.vertices.buf, offsets);
vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.scene.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(offScreenCmdBuffer, meshes.scene.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(offScreenCmdBuffer);
// Make sure color writes to the framebuffer are finished before using it as transfer source
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
// Copy region for transfer from framebuffer to cube face
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = faceIndex;
copyRegion.dstSubresource.mipLevel = 0;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = shadowCubeMap.width;
copyRegion.extent.height = shadowCubeMap.height;
copyRegion.extent.depth = 1;
// Put image copy into command buffer
vkCmdCopyImage(
offScreenCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
shadowCubeMap.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copyRegion);
// Transform framebuffer color attachment back
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
}
// Command buffer for rendering and copying all cube map faces
void buildOffscreenCommandBuffer()
{
VkResult err;
// Create separate command buffer for offscreen
// rendering
if (offScreenCmdBuffer == VK_NULL_HANDLE)
{
VkCommandBufferAllocateInfo cmd = vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult vkRes = vkAllocateCommandBuffers(device, &cmd, &offScreenCmdBuffer);
assert(!vkRes);
}
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
err = vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo);
assert(!err);
VkViewport viewport = vkTools::initializers::viewport(
(float)offScreenFrameBuf.width,
(float)offScreenFrameBuf.height,
0.0f,
1.0f);
vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
offScreenFrameBuf.width,
offScreenFrameBuf.height,
0,
0);
vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor);
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = 6;
// Change image layout for all cubemap faces to transfer destination
vkTools::setImageLayout(
offScreenCmdBuffer,
shadowCubeMap.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
for (uint32_t face = 0; face < 6; ++face)
{
updateCubeFace(face);
}
// Change image layout for all cubemap faces to shader read after they have been copied
vkTools::setImageLayout(
offScreenCmdBuffer,
shadowCubeMap.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
subresourceRange);
err = vkEndCommandBuffer(offScreenCmdBuffer);
assert(!err);
}
void reBuildCommandBuffers()
{
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
buildCommandBuffers();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL);
if (displayCubeMap)
{
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.cubeMap);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.skybox.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.skybox.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.skybox.indexCount, 1, 0, 0, 0);
}
else
{
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.scene);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.scene.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.scene.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.scene.indexCount, 1, 0, 0, 0);
}
vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
// Gather command buffers to be sumitted to the queue
std::vector<VkCommandBuffer> submitCmdBuffers = {
offScreenCmdBuffer,
drawCmdBuffers[currentBuffer],
};
submitInfo.commandBufferCount = submitCmdBuffers.size();
submitInfo.pCommandBuffers = submitCmdBuffers.data();
// Submit to queue
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
}
void loadMeshes()
{
loadMesh(getAssetPath() + "models/cube.obj", &meshes.skybox, vertexLayout, 2.0f);
loadMesh(getAssetPath() + "models/shadowscene_fire.dae", &meshes.scene, vertexLayout, 2.0f);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Color
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 5);
// Location 3 : Normal
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses three ubos and two image samplers
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
3);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
// Shared pipeline layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler (cube map)
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
// 3D scene pipeline layout
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.scene);
assert(!err);
// Offscreen pipeline layout
// Push constants for cube map face view matrices
VkPushConstantRange pushConstantRange =
vkTools::initializers::pushConstantRange(
VK_SHADER_STAGE_VERTEX_BIT,
sizeof(glm::mat4),
0);
// Push constant ranges are part of the pipeline layout
pPipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pPipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen);
assert(!err);
}
void setupDescriptorSets()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes;
// 3D scene
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene);
assert(!vkRes);
// Image descriptor for the cube map
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
shadowCubeMap.sampler,
shadowCubeMap.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> sceneDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.scene,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.scene.descriptor),
// Binding 1 : Fragment shader shadow sampler
vkTools::initializers::writeDescriptorSet(
descriptorSets.scene,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor)
};
vkUpdateDescriptorSets(device, sceneDescriptorSets.size(), sceneDescriptorSets.data(), 0, NULL);
// Offscreen
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen);
assert(!vkRes);
std::vector<VkWriteDescriptorSet> offScreenWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.offscreen,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.offscreen.descriptor),
};
vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// 3D scene pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/shadowmapomni/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/shadowmapomni/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayouts.scene,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.scene);
assert(!err);
// Cube map display pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/shadowmapomni/cubemapdisplay.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/shadowmapomni/cubemapdisplay.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.cubeMap);
assert(!err);
// Offscreen pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/shadowmapomni/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/shadowmapomni/offscreen.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
pipelineCreateInfo.layout = pipelineLayouts.offscreen;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen);
assert(!err);
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Offscreen vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboOffscreenVS),
&uboOffscreenVS,
&uniformData.offscreen.buffer,
&uniformData.offscreen.memory,
&uniformData.offscreen.descriptor);
// 3D scene
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVSscene),
&uboVSscene,
&uniformData.scene.buffer,
&uniformData.scene.memory,
&uniformData.scene.descriptor);
updateUniformBufferOffscreen();
updateUniformBuffers();
}
void updateUniformBuffers()
{
// 3D scene
uboVSscene.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, zNear, zFar);
uboVSscene.view = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, displayCubeMap ? 0.0f : zoom));
uboVSscene.model = glm::mat4();
uboVSscene.model = glm::rotate(uboVSscene.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVSscene.model = glm::rotate(uboVSscene.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVSscene.model = glm::rotate(uboVSscene.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
uboVSscene.lightPos = lightPos;
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.scene.memory, 0, sizeof(uboVSscene), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVSscene, sizeof(uboVSscene));
vkUnmapMemory(device, uniformData.scene.memory);
}
void updateUniformBufferOffscreen()
{
lightPos.x = sin(glm::radians(timer * 360.0f)) * 1.0f;
lightPos.z = cos(glm::radians(timer * 360.0f)) * 1.0f;
uboOffscreenVS.projection = glm::perspective((float)(M_PI / 2.0), 1.0f, zNear, zFar);
uboOffscreenVS.view = glm::mat4();
uboOffscreenVS.model = glm::translate(glm::mat4(), glm::vec3(-lightPos.x, -lightPos.y, -lightPos.z));
uboOffscreenVS.lightPos = lightPos;
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.offscreen.memory, 0, sizeof(uboOffscreenVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboOffscreenVS, sizeof(uboOffscreenVS));
vkUnmapMemory(device, uniformData.offscreen.memory);
}
void prepare()
{
VulkanExampleBase::prepare();
loadMeshes();
setupVertexDescriptions();
prepareUniformBuffers();
prepareCubeMap();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
prepareOffscreenFramebuffer();
buildCommandBuffers();
buildOffscreenCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
if (!paused)
{
updateUniformBufferOffscreen();
updateUniformBuffers();
}
}
virtual void viewChanged()
{
updateUniformBufferOffscreen();
updateUniformBuffers();
}
void toggleCubeMapDisplay()
{
displayCubeMap = !displayCubeMap;
reBuildCommandBuffers();
}
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
if (uMsg == WM_KEYDOWN)
{
switch (wParam)
{
case 0x44:
vulkanExample->toggleCubeMapDisplay();
break;
}
}
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
vulkanExample = new VulkanExample();
#if defined(_WIN32)
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
vulkanExample->renderLoop();
#if !defined(__ANDROID__)
delete(vulkanExample);
return 0;
#endif
}