procedural-3d-engine/examples/texturesparseresidency/texturesparseresidency.cpp
2020-07-11 21:23:05 +02:00

1012 lines
39 KiB
C++

/*
* Vulkan Example - Sparse texture residency example
*
* Copyright (C) 2016-2020 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
/*
* Note : This sample is work-in-progress and works basically, but it's not yet finished
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#include <algorithm>
#include <random>
#include <chrono>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanDevice.hpp"
#include "VulkanBuffer.hpp"
#include "VulkanModel.hpp"
#define ENABLE_VALIDATION false
// Virtual texture page as a part of the partially resident texture
// Contains memory bindings, offsets and status information
struct VirtualTexturePage
{
VkOffset3D offset;
VkExtent3D extent;
VkSparseImageMemoryBind imageMemoryBind; // Sparse image memory bind for this page
VkDeviceSize size; // Page (memory) size in bytes
uint32_t mipLevel; // Mip level that this page belongs to
uint32_t layer; // Array layer that this page belongs to
uint32_t index;
VirtualTexturePage()
{
imageMemoryBind.memory = VK_NULL_HANDLE; // Page initially not backed up by memory
}
bool resident()
{
return (imageMemoryBind.memory != VK_NULL_HANDLE);
}
// Allocate Vulkan memory for the virtual page
void allocate(VkDevice device, uint32_t memoryTypeIndex)
{
if (imageMemoryBind.memory != VK_NULL_HANDLE)
{
return;
};
imageMemoryBind = {};
VkMemoryAllocateInfo allocInfo = vks::initializers::memoryAllocateInfo();
allocInfo.allocationSize = size;
allocInfo.memoryTypeIndex = memoryTypeIndex;
VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &imageMemoryBind.memory));
VkImageSubresource subResource{};
subResource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subResource.mipLevel = mipLevel;
subResource.arrayLayer = layer;
// Sparse image memory binding
imageMemoryBind.subresource = subResource;
imageMemoryBind.extent = extent;
imageMemoryBind.offset = offset;
}
// Release Vulkan memory allocated for this page
void release(VkDevice device)
{
if (imageMemoryBind.memory != VK_NULL_HANDLE)
{
vkFreeMemory(device, imageMemoryBind.memory, nullptr);
imageMemoryBind.memory = VK_NULL_HANDLE;
}
}
};
// Virtual texture object containing all pages
struct VirtualTexture
{
VkDevice device;
VkImage image; // Texture image handle
VkBindSparseInfo bindSparseInfo; // Sparse queue binding information
std::vector<VirtualTexturePage> pages; // Contains all virtual pages of the texture
std::vector<VkSparseImageMemoryBind> sparseImageMemoryBinds; // Sparse image memory bindings of all memory-backed virtual tables
std::vector<VkSparseMemoryBind> opaqueMemoryBinds; // Sparse ópaque memory bindings for the mip tail (if present)
VkSparseImageMemoryBindInfo imageMemoryBindInfo; // Sparse image memory bind info
VkSparseImageOpaqueMemoryBindInfo opaqueMemoryBindInfo; // Sparse image opaque memory bind info (mip tail)
uint32_t mipTailStart; // First mip level in mip tail
VkSparseImageMemoryRequirements sparseImageMemoryRequirements; // @todo: Comment
VirtualTexturePage* addPage(VkOffset3D offset, VkExtent3D extent, const VkDeviceSize size, const uint32_t mipLevel, uint32_t layer)
{
VirtualTexturePage newPage;
newPage.offset = offset;
newPage.extent = extent;
newPage.size = size;
newPage.mipLevel = mipLevel;
newPage.layer = layer;
newPage.index = static_cast<uint32_t>(pages.size());
newPage.imageMemoryBind = {};
newPage.imageMemoryBind.offset = offset;
newPage.imageMemoryBind.extent = extent;
pages.push_back(newPage);
return &pages.back();
}
// Call before sparse binding to update memory bind list etc.
void updateSparseBindInfo()
{
// Update list of memory-backed sparse image memory binds
//sparseImageMemoryBinds.resize(pages.size());
sparseImageMemoryBinds.clear();
for (auto page : pages)
{
sparseImageMemoryBinds.push_back(page.imageMemoryBind);
}
// Update sparse bind info
bindSparseInfo = vks::initializers::bindSparseInfo();
// todo: Semaphore for queue submission
// bindSparseInfo.signalSemaphoreCount = 1;
// bindSparseInfo.pSignalSemaphores = &bindSparseSemaphore;
// Image memory binds
imageMemoryBindInfo = {};
imageMemoryBindInfo.image = image;
imageMemoryBindInfo.bindCount = static_cast<uint32_t>(sparseImageMemoryBinds.size());
imageMemoryBindInfo.pBinds = sparseImageMemoryBinds.data();
bindSparseInfo.imageBindCount = (imageMemoryBindInfo.bindCount > 0) ? 1 : 0;
bindSparseInfo.pImageBinds = &imageMemoryBindInfo;
// Opaque image memory binds for the mip tail
opaqueMemoryBindInfo.image = image;
opaqueMemoryBindInfo.bindCount = static_cast<uint32_t>(opaqueMemoryBinds.size());
opaqueMemoryBindInfo.pBinds = opaqueMemoryBinds.data();
bindSparseInfo.imageOpaqueBindCount = (opaqueMemoryBindInfo.bindCount > 0) ? 1 : 0;
bindSparseInfo.pImageOpaqueBinds = &opaqueMemoryBindInfo;
}
// Release all Vulkan resources
void destroy()
{
for (auto page : pages)
{
page.release(device);
}
for (auto bind : opaqueMemoryBinds)
{
vkFreeMemory(device, bind.memory, nullptr);
}
}
};
uint32_t memoryTypeIndex;
class VulkanExample : public VulkanExampleBase
{
public:
//todo: comments
struct SparseTexture : VirtualTexture {
VkSampler sampler;
VkImageLayout imageLayout;
VkImageView view;
VkDescriptorImageInfo descriptor;
VkFormat format;
uint32_t width, height;
uint32_t mipLevels;
uint32_t layerCount;
} texture;
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
});
vks::Model plane;
struct UboVS {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 viewPos;
float lodBias = 0.0f;
} uboVS;
vks::Buffer uniformBufferVS;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
//todo: comment
VkSemaphore bindSparseSemaphore = VK_NULL_HANDLE;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Sparse texture residency";
std::cout.imbue(std::locale(""));
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -20.0f));
camera.setRotation(glm::vec3(0.0f, 180.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
settings.overlay = true;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
destroyTextureImage(texture);
vkDestroySemaphore(device, bindSparseSemaphore, nullptr);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
plane.destroy();
uniformBufferVS.destroy();
}
virtual void getEnabledFeatures()
{
if (deviceFeatures.sparseBinding && deviceFeatures.sparseResidencyImage2D) {
enabledFeatures.shaderResourceResidency = VK_TRUE;
enabledFeatures.shaderResourceMinLod = VK_TRUE;
enabledFeatures.sparseBinding = VK_TRUE;
enabledFeatures.sparseResidencyImage2D = VK_TRUE;
}
else {
std::cout << "Sparse binding not supported" << std::endl;
}
}
glm::uvec3 alignedDivision(const VkExtent3D& extent, const VkExtent3D& granularity)
{
glm::uvec3 res;
res.x = extent.width / granularity.width + ((extent.width % granularity.width) ? 1u : 0u);
res.y = extent.height / granularity.height + ((extent.height % granularity.height) ? 1u : 0u);
res.z = extent.depth / granularity.depth + ((extent.depth % granularity.depth) ? 1u : 0u);
return res;
}
void prepareSparseTexture(uint32_t width, uint32_t height, uint32_t layerCount, VkFormat format)
{
texture.device = vulkanDevice->logicalDevice;
texture.width = width;
texture.height = height;
texture.mipLevels = floor(log2(std::max(width, height))) + 1;
texture.layerCount = layerCount;
texture.format = format;
// Get device properites for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
const VkImageType imageType = VK_IMAGE_TYPE_2D;
const VkSampleCountFlagBits sampleCount = VK_SAMPLE_COUNT_1_BIT;
const VkImageUsageFlags imageUsage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
const VkImageTiling imageTiling = VK_IMAGE_TILING_OPTIMAL;
// Get sparse image properties
std::vector<VkSparseImageFormatProperties> sparseProperties;
// Sparse properties count for the desired format
uint32_t sparsePropertiesCount;
vkGetPhysicalDeviceSparseImageFormatProperties(physicalDevice, format, imageType, sampleCount, imageUsage, imageTiling, &sparsePropertiesCount, nullptr);
// Check if sparse is supported for this format
if (sparsePropertiesCount == 0)
{
std::cout << "Error: Requested format does not support sparse features!" << std::endl;
return;
}
// Get actual image format properties
sparseProperties.resize(sparsePropertiesCount);
vkGetPhysicalDeviceSparseImageFormatProperties(physicalDevice, format, imageType, sampleCount, imageUsage, imageTiling, &sparsePropertiesCount, sparseProperties.data());
std::cout << "Sparse image format properties: " << sparsePropertiesCount << std::endl;
for (auto props : sparseProperties)
{
std::cout << "\t Image granularity: w = " << props.imageGranularity.width << " h = " << props.imageGranularity.height << " d = " << props.imageGranularity.depth << std::endl;
std::cout << "\t Aspect mask: " << props.aspectMask << std::endl;
std::cout << "\t Flags: " << props.flags << std::endl;
}
// Create sparse image
VkImageCreateInfo sparseImageCreateInfo = vks::initializers::imageCreateInfo();
sparseImageCreateInfo.imageType = imageType;
sparseImageCreateInfo.format = texture.format;
sparseImageCreateInfo.mipLevels = texture.mipLevels;
sparseImageCreateInfo.arrayLayers = texture.layerCount;
sparseImageCreateInfo.samples = sampleCount;
sparseImageCreateInfo.tiling = imageTiling;
sparseImageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
sparseImageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
sparseImageCreateInfo.extent = { texture.width, texture.height, 1 };
sparseImageCreateInfo.usage = imageUsage;
sparseImageCreateInfo.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &sparseImageCreateInfo, nullptr, &texture.image));
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vks::tools::setImageLayout(copyCmd, texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
vulkanDevice->flushCommandBuffer(copyCmd, queue);
// Get memory requirements
VkMemoryRequirements sparseImageMemoryReqs;
// Sparse image memory requirement counts
vkGetImageMemoryRequirements(device, texture.image, &sparseImageMemoryReqs);
std::cout << "Image memory requirements:" << std::endl;
std::cout << "\t Size: " << sparseImageMemoryReqs.size << std::endl;
std::cout << "\t Alignment: " << sparseImageMemoryReqs.alignment << std::endl;
// Check requested image size against hardware sparse limit
if (sparseImageMemoryReqs.size > vulkanDevice->properties.limits.sparseAddressSpaceSize)
{
std::cout << "Error: Requested sparse image size exceeds supportes sparse address space size!" << std::endl;
return;
};
// Get sparse memory requirements
// Count
uint32_t sparseMemoryReqsCount = 32;
std::vector<VkSparseImageMemoryRequirements> sparseMemoryReqs(sparseMemoryReqsCount);
vkGetImageSparseMemoryRequirements(device, texture.image, &sparseMemoryReqsCount, sparseMemoryReqs.data());
if (sparseMemoryReqsCount == 0)
{
std::cout << "Error: No memory requirements for the sparse image!" << std::endl;
return;
}
sparseMemoryReqs.resize(sparseMemoryReqsCount);
// Get actual requirements
vkGetImageSparseMemoryRequirements(device, texture.image, &sparseMemoryReqsCount, sparseMemoryReqs.data());
std::cout << "Sparse image memory requirements: " << sparseMemoryReqsCount << std::endl;
for (auto reqs : sparseMemoryReqs)
{
std::cout << "\t Image granularity: w = " << reqs.formatProperties.imageGranularity.width << " h = " << reqs.formatProperties.imageGranularity.height << " d = " << reqs.formatProperties.imageGranularity.depth << std::endl;
std::cout << "\t Mip tail first LOD: " << reqs.imageMipTailFirstLod << std::endl;
std::cout << "\t Mip tail size: " << reqs.imageMipTailSize << std::endl;
std::cout << "\t Mip tail offset: " << reqs.imageMipTailOffset << std::endl;
std::cout << "\t Mip tail stride: " << reqs.imageMipTailStride << std::endl;
//todo:multiple reqs
texture.mipTailStart = reqs.imageMipTailFirstLod;
}
// Get sparse image requirements for the color aspect
VkSparseImageMemoryRequirements sparseMemoryReq;
bool colorAspectFound = false;
for (auto reqs : sparseMemoryReqs)
{
if (reqs.formatProperties.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT)
{
sparseMemoryReq = reqs;
colorAspectFound = true;
break;
}
}
if (!colorAspectFound)
{
std::cout << "Error: Could not find sparse image memory requirements for color aspect bit!" << std::endl;
return;
}
// todo:
// Calculate number of required sparse memory bindings by alignment
assert((sparseImageMemoryReqs.size % sparseImageMemoryReqs.alignment) == 0);
memoryTypeIndex = vulkanDevice->getMemoryType(sparseImageMemoryReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
// Get sparse bindings
uint32_t sparseBindsCount = static_cast<uint32_t>(sparseImageMemoryReqs.size / sparseImageMemoryReqs.alignment);
std::vector<VkSparseMemoryBind> sparseMemoryBinds(sparseBindsCount);
texture.sparseImageMemoryRequirements = sparseMemoryReq;
// Check if the format has a single mip tail for all layers or one mip tail for each layer
// The mip tail contains all mip levels > sparseMemoryReq.imageMipTailFirstLod
bool singleMipTail = sparseMemoryReq.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT;
// @todo: Comment
bool alingedMipSize = sparseMemoryReq.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT;
// Sparse bindings for each mip level of all layers outside of the mip tail
for (uint32_t layer = 0; layer < texture.layerCount; layer++)
{
// sparseMemoryReq.imageMipTailFirstLod is the first mip level that's stored inside the mip tail
for (uint32_t mipLevel = 0; mipLevel < sparseMemoryReq.imageMipTailFirstLod; mipLevel++)
{
VkExtent3D extent;
extent.width = std::max(sparseImageCreateInfo.extent.width >> mipLevel, 1u);
extent.height = std::max(sparseImageCreateInfo.extent.height >> mipLevel, 1u);
extent.depth = std::max(sparseImageCreateInfo.extent.depth >> mipLevel, 1u);
VkImageSubresource subResource{};
subResource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subResource.mipLevel = mipLevel;
subResource.arrayLayer = layer;
// Aligned sizes by image granularity
VkExtent3D imageGranularity = sparseMemoryReq.formatProperties.imageGranularity;
glm::uvec3 sparseBindCounts = alignedDivision(extent, imageGranularity);
glm::uvec3 lastBlockExtent;
lastBlockExtent.x = (extent.width % imageGranularity.width) ? extent.width % imageGranularity.width : imageGranularity.width;
lastBlockExtent.y = (extent.height % imageGranularity.height) ? extent.height % imageGranularity.height : imageGranularity.height;
lastBlockExtent.z = (extent.depth % imageGranularity.depth) ? extent.depth % imageGranularity.depth : imageGranularity.depth;
// @todo: Comment
uint32_t index = 0;
for (uint32_t z = 0; z < sparseBindCounts.z; z++)
{
for (uint32_t y = 0; y < sparseBindCounts.y; y++)
{
for (uint32_t x = 0; x < sparseBindCounts.x; x++)
{
// Offset
VkOffset3D offset;
offset.x = x * imageGranularity.width;
offset.y = y * imageGranularity.height;
offset.z = z * imageGranularity.depth;
// Size of the page
VkExtent3D extent;
extent.width = (x == sparseBindCounts.x - 1) ? lastBlockExtent.x : imageGranularity.width;
extent.height = (y == sparseBindCounts.y - 1) ? lastBlockExtent.y : imageGranularity.height;
extent.depth = (z == sparseBindCounts.z - 1) ? lastBlockExtent.z : imageGranularity.depth;
// Add new virtual page
VirtualTexturePage* newPage = texture.addPage(offset, extent, sparseImageMemoryReqs.alignment, mipLevel, layer);
newPage->imageMemoryBind.subresource = subResource;
index++;
}
}
}
}
// Check if format has one mip tail per layer
if ((!singleMipTail) && (sparseMemoryReq.imageMipTailFirstLod < texture.mipLevels))
{
// Allocate memory for the mip tail
VkMemoryAllocateInfo allocInfo = vks::initializers::memoryAllocateInfo();
allocInfo.allocationSize = sparseMemoryReq.imageMipTailSize;
allocInfo.memoryTypeIndex = memoryTypeIndex;
VkDeviceMemory deviceMemory;
VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &deviceMemory));
// (Opaque) sparse memory binding
VkSparseMemoryBind sparseMemoryBind{};
sparseMemoryBind.resourceOffset = sparseMemoryReq.imageMipTailOffset + layer * sparseMemoryReq.imageMipTailStride;
sparseMemoryBind.size = sparseMemoryReq.imageMipTailSize;
sparseMemoryBind.memory = deviceMemory;
texture.opaqueMemoryBinds.push_back(sparseMemoryBind);
}
} // end layers and mips
std::cout << "Texture info:" << std::endl;
std::cout << "\tDim: " << texture.width << " x " << texture.height << std::endl;
std::cout << "\tVirtual pages: " << texture.pages.size() << std::endl;
// Check if format has one mip tail for all layers
if ((sparseMemoryReq.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && (sparseMemoryReq.imageMipTailFirstLod < texture.mipLevels))
{
// Allocate memory for the mip tail
VkMemoryAllocateInfo allocInfo = vks::initializers::memoryAllocateInfo();
allocInfo.allocationSize = sparseMemoryReq.imageMipTailSize;
allocInfo.memoryTypeIndex = memoryTypeIndex;
VkDeviceMemory deviceMemory;
VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &deviceMemory));
// (Opaque) sparse memory binding
VkSparseMemoryBind sparseMemoryBind{};
sparseMemoryBind.resourceOffset = sparseMemoryReq.imageMipTailOffset;
sparseMemoryBind.size = sparseMemoryReq.imageMipTailSize;
sparseMemoryBind.memory = deviceMemory;
texture.opaqueMemoryBinds.push_back(sparseMemoryBind);
}
// Create signal semaphore for sparse binding
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &bindSparseSemaphore));
// Prepare bind sparse info for reuse in queue submission
texture.updateSparseBindInfo();
// Bind to queue
// todo: in draw?
vkQueueBindSparse(queue, 1, &texture.bindSparseInfo, VK_NULL_HANDLE);
//todo: use sparse bind semaphore
vkQueueWaitIdle(queue);
// Create sampler
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = static_cast<float>(texture.mipLevels);
sampler.maxAnisotropy = vulkanDevice->features.samplerAnisotropy ? vulkanDevice->properties.limits.maxSamplerAnisotropy : 1.0f;
sampler.anisotropyEnable = false;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler));
// Create image view
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
view.subresourceRange.levelCount = texture.mipLevels;
view.image = texture.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
// Fill image descriptor image info that can be used during the descriptor set setup
texture.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
texture.descriptor.imageView = texture.view;
texture.descriptor.sampler = texture.sampler;
}
// Free all Vulkan resources used a texture object
void destroyTextureImage(SparseTexture texture)
{
vkDestroyImageView(device, texture.view, nullptr);
vkDestroyImage(device, texture.image, nullptr);
vkDestroySampler(device, texture.sampler, nullptr);
texture.destroy();
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &plane.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], plane.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], plane.indexCount, 1, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void loadAssets()
{
plane.loadFromFile(getAssetPath() + "models/plane_z.obj", vertexLayout, 1.0f, vulkanDevice, queue);
}
void setupDescriptorPool()
{
// Example uses one ubo and one image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBufferVS.descriptor),
// Binding 1 : Fragment shader texture sampler
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texture.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo( pipelineLayout, renderPass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
// Vertex bindings an attributes
std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX),
};
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 0: Texture coordinates
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
pipelineCI.pVertexInputState = &vertexInputState;
shaderStages[0] = loadShader(getShadersPath() + "texturesparseresidency/sparseresidency.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texturesparseresidency/sparseresidency.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBufferVS,
sizeof(uboVS),
&uboVS));
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboVS.projection = camera.matrices.perspective;
uboVS.model = camera.matrices.view;
uboVS.viewPos = camera.viewPos;
VK_CHECK_RESULT(uniformBufferVS.map());
memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS));
uniformBufferVS.unmap();
}
void prepare()
{
VulkanExampleBase::prepare();
// Check if the GPU supports sparse residency for 2D images
if (!vulkanDevice->features.sparseResidencyImage2D) {
vks::tools::exitFatal("Device does not support sparse residency for 2D images!", VK_ERROR_FEATURE_NOT_PRESENT);
}
loadAssets();
prepareUniformBuffers();
// Create a virtual texture with max. possible dimension (does not take up any VRAM yet)
prepareSparseTexture(4096, 4096, 1, VK_FORMAT_R8G8B8A8_UNORM);
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (camera.updated) {
updateUniformBuffers();
}
}
void uploadContent(VirtualTexturePage page, VkImage image)
{
// Generate some random image data and upload as a buffer
const size_t bufferSize = 4 * page.extent.width * page.extent.height;
vks::Buffer imageBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&imageBuffer,
bufferSize));
imageBuffer.map();
// Fill buffer with random colors
std::random_device rd;
std::mt19937 rndEngine(rd());
std::uniform_int_distribution<uint32_t> rndDist(0, 255);
uint8_t* data = (uint8_t*)imageBuffer.mapped;
uint8_t rndVal[4];
ZeroMemory(&rndVal, sizeof(uint32_t));
while (rndVal[0] + rndVal[1] + rndVal[2] < 10) {
rndVal[0] = (uint8_t)rndDist(rndEngine);
rndVal[1] = (uint8_t)rndDist(rndEngine);
rndVal[2] = (uint8_t)rndDist(rndEngine);
}
rndVal[3] = 255;
for (uint32_t y = 0; y < page.extent.height; y++)
{
for (uint32_t x = 0; x < page.extent.width; x++)
{
for (uint32_t c = 0; c < 4; c++, ++data)
{
*data = rndVal[c];
}
}
}
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vks::tools::setImageLayout(copyCmd, image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
VkBufferImageCopy region{};
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageSubresource.mipLevel = page.mipLevel;
region.imageOffset = page.offset;
region.imageExtent = page.extent;
vkCmdCopyBufferToImage(copyCmd, imageBuffer.buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
vks::tools::setImageLayout(copyCmd, image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
vulkanDevice->flushCommandBuffer(copyCmd, queue);
imageBuffer.destroy();
}
void fillRandomPages()
{
vkDeviceWaitIdle(device);
std::default_random_engine rndEngine(std::random_device{}());
std::uniform_real_distribution<float> rndDist(0.0f, 1.0f);
std::vector<VirtualTexturePage> updatedPages;
for (auto& page : texture.pages) {
if (rndDist(rndEngine) < 0.5f) {
continue;
}
page.allocate(device, memoryTypeIndex);
updatedPages.push_back(page);
}
// Update sparse queue binding
texture.updateSparseBindInfo();
VkFenceCreateInfo fenceInfo = vks::initializers::fenceCreateInfo(VK_FLAGS_NONE);
VkFence fence;
VK_CHECK_RESULT(vkCreateFence(device, &fenceInfo, nullptr, &fence));
vkQueueBindSparse(queue, 1, &texture.bindSparseInfo, fence);
vkWaitForFences(device, 1, &fence, VK_TRUE, UINT64_MAX);
for (auto &page: updatedPages) {
uploadContent(page, texture.image);
}
}
void fillMipTail()
{
//@todo: WIP
VkDeviceSize imageMipTailSize = texture.sparseImageMemoryRequirements.imageMipTailSize;
VkDeviceSize imageMipTailOffset = texture.sparseImageMemoryRequirements.imageMipTailOffset;
// Stride between memory bindings for each mip level if not single mip tail (VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT not set)
VkDeviceSize imageMipTailStride = texture.sparseImageMemoryRequirements.imageMipTailStride;
VkSparseImageMemoryBind mipTailimageMemoryBind{};
VkMemoryAllocateInfo allocInfo = vks::initializers::memoryAllocateInfo();
allocInfo.allocationSize = imageMipTailSize;
allocInfo.memoryTypeIndex = memoryTypeIndex;
VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &mipTailimageMemoryBind.memory));
uint32_t mipLevel = texture.sparseImageMemoryRequirements.imageMipTailFirstLod;
uint32_t width = std::max(texture.width >> texture.sparseImageMemoryRequirements.imageMipTailFirstLod, 1u);
uint32_t height = std::max(texture.height >> texture.sparseImageMemoryRequirements.imageMipTailFirstLod, 1u);
uint32_t depth = 1;
for (uint32_t i = texture.mipTailStart; i < texture.mipLevels; i++) {
const uint32_t width = std::max(texture.width >> i, 1u);
const uint32_t height = std::max(texture.height >> i, 1u);
const uint32_t depth = 1;
// Generate some random image data and upload as a buffer
const size_t bufferSize = 4 * width * height;
vks::Buffer imageBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&imageBuffer,
bufferSize));
imageBuffer.map();
// Fill buffer with random colors
std::random_device rd;
std::mt19937 rndEngine(rd());
std::uniform_int_distribution<uint32_t> rndDist(0, 255);
uint8_t* data = (uint8_t*)imageBuffer.mapped;
uint8_t rndVal[4];
ZeroMemory(&rndVal, sizeof(uint32_t));
while (rndVal[0] + rndVal[1] + rndVal[2] < 10) {
rndVal[0] = (uint8_t)rndDist(rndEngine);
rndVal[1] = (uint8_t)rndDist(rndEngine);
rndVal[2] = (uint8_t)rndDist(rndEngine);
}
rndVal[3] = 255;
switch (mipLevel) {
case 0:
rndVal[0] = rndVal[1] = rndVal[2] = 255;
break;
case 1:
rndVal[0] = rndVal[1] = rndVal[2] = 200;
break;
case 2:
rndVal[0] = rndVal[1] = rndVal[2] = 150;
break;
}
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
for (uint32_t c = 0; c < 4; c++, ++data)
{
*data = rndVal[c];
}
}
}
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vks::tools::setImageLayout(copyCmd, texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
VkBufferImageCopy region{};
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageSubresource.mipLevel = i;
region.imageOffset = {};
region.imageExtent = { width, height, depth };
vkCmdCopyBufferToImage(copyCmd, imageBuffer.buffer, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
vks::tools::setImageLayout(copyCmd, texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
vulkanDevice->flushCommandBuffer(copyCmd, queue);
imageBuffer.destroy();
}
}
void flushRandomPages()
{
vkDeviceWaitIdle(device);
std::default_random_engine rndEngine(std::random_device{}());
std::uniform_real_distribution<float> rndDist(0.0f, 1.0f);
std::vector<VirtualTexturePage> updatedPages;
for (auto& page : texture.pages)
{
if (rndDist(rndEngine) < 0.5f) {
continue;
}
page.release(device);
}
// Update sparse queue binding
texture.updateSparseBindInfo();
VkFenceCreateInfo fenceInfo = vks::initializers::fenceCreateInfo(VK_FLAGS_NONE);
VkFence fence;
VK_CHECK_RESULT(vkCreateFence(device, &fenceInfo, nullptr, &fence));
vkQueueBindSparse(queue, 1, &texture.bindSparseInfo, fence);
vkWaitForFences(device, 1, &fence, VK_TRUE, UINT64_MAX);
}
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay)
{
if (overlay->header("Settings")) {
if (overlay->sliderFloat("LOD bias", &uboVS.lodBias, -(float)texture.mipLevels, (float)texture.mipLevels)) {
updateUniformBuffers();
}
if (overlay->button("Fill random pages")) {
fillRandomPages();
}
if (overlay->button("Flush random pages")) {
flushRandomPages();
}
if (overlay->button("Fill mip tail")) {
fillMipTail();
}
}
if (overlay->header("Statistics")) {
uint32_t respages = 0;
std::for_each(texture.pages.begin(), texture.pages.end(), [&respages](VirtualTexturePage page) { respages += (page.resident()) ? 1 : 0; });
overlay->text("Resident pages: %d of %d", respages, static_cast<uint32_t>(texture.pages.size()));
overlay->text("Mip tail starts at: %d", texture.mipTailStart);
}
}
};
VULKAN_EXAMPLE_MAIN()