procedural-3d-engine/examples/variablerateshading/variablerateshading.cpp
2022-12-24 15:26:48 +01:00

439 lines
21 KiB
C++

/*
* Vulkan Example - Variable rate shading
*
* Copyright (C) 2020-2022 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "variablerateshading.h"
VulkanExample::VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Variable rate shading";
apiVersion = VK_API_VERSION_1_1;
camera.type = Camera::CameraType::firstperson;
camera.flipY = true;
camera.setPosition(glm::vec3(0.0f, 1.0f, 0.0f));
camera.setRotation(glm::vec3(0.0f, -90.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
camera.setRotationSpeed(0.25f);
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_NV_SHADING_RATE_IMAGE_EXTENSION_NAME);
}
VulkanExample::~VulkanExample()
{
vkDestroyPipeline(device, basePipelines.masked, nullptr);
vkDestroyPipeline(device, basePipelines.opaque, nullptr);
vkDestroyPipeline(device, shadingRatePipelines.masked, nullptr);
vkDestroyPipeline(device, shadingRatePipelines.opaque, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyImageView(device, shadingRateImage.view, nullptr);
vkDestroyImage(device, shadingRateImage.image, nullptr);
vkFreeMemory(device, shadingRateImage.memory, nullptr);
shaderData.buffer.destroy();
}
void VulkanExample::getEnabledFeatures()
{
enabledFeatures.samplerAnisotropy = deviceFeatures.samplerAnisotropy;
// POI
enabledPhysicalDeviceShadingRateImageFeaturesNV = {};
enabledPhysicalDeviceShadingRateImageFeaturesNV.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADING_RATE_IMAGE_FEATURES_NV;
enabledPhysicalDeviceShadingRateImageFeaturesNV.shadingRateImage = VK_TRUE;
deviceCreatepNextChain = &enabledPhysicalDeviceShadingRateImageFeaturesNV;
}
/*
If the window has been resized, we need to recreate the shading rate image
*/
void VulkanExample::handleResize()
{
// Delete allocated resources
vkDestroyImageView(device, shadingRateImage.view, nullptr);
vkDestroyImage(device, shadingRateImage.image, nullptr);
vkFreeMemory(device, shadingRateImage.memory, nullptr);
// Recreate image
prepareShadingRateImage();
resized = false;
}
void VulkanExample::buildCommandBuffers()
{
if (resized)
{
handleResize();
}
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
// POI: Bind the image that contains the shading rate patterns
if (enableShadingRate) {
vkCmdBindShadingRateImageNV(drawCmdBuffers[i], shadingRateImage.view, VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV);
};
// Render the scene
Pipelines& pipelines = enableShadingRate ? shadingRatePipelines : basePipelines;
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.opaque);
scene.draw(drawCmdBuffers[i], vkglTF::RenderFlags::BindImages | vkglTF::RenderFlags::RenderOpaqueNodes, pipelineLayout);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.masked);
scene.draw(drawCmdBuffers[i], vkglTF::RenderFlags::BindImages | vkglTF::RenderFlags::RenderAlphaMaskedNodes, pipelineLayout);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void VulkanExample::loadAssets()
{
vkglTF::descriptorBindingFlags = vkglTF::DescriptorBindingFlags::ImageBaseColor | vkglTF::DescriptorBindingFlags::ImageNormalMap;
scene.loadFromFile(getAssetPath() + "models/sponza/sponza.gltf", vulkanDevice, queue, vkglTF::FileLoadingFlags::PreTransformVertices);
}
void VulkanExample::setupDescriptors()
{
// Pool
const std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor set layout
const std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Pipeline layout
const std::vector<VkDescriptorSetLayout> setLayouts = {
descriptorSetLayout,
vkglTF::descriptorSetLayoutImage,
};
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), 2);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Descriptor set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
// [POI]
void VulkanExample::prepareShadingRateImage()
{
// Shading rate image size depends on shading rate texel size
// For each texel in the target image, there is a corresponding shading texel size width x height block in the shading rate image
VkExtent3D imageExtent{};
imageExtent.width = static_cast<uint32_t>(ceil(width / (float)physicalDeviceShadingRateImagePropertiesNV.shadingRateTexelSize.width));
imageExtent.height = static_cast<uint32_t>(ceil(height / (float)physicalDeviceShadingRateImagePropertiesNV.shadingRateTexelSize.height));
imageExtent.depth = 1;
VkImageCreateInfo imageCI{};
imageCI.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCI.imageType = VK_IMAGE_TYPE_2D;
imageCI.format = VK_FORMAT_R8_UINT;
imageCI.extent = imageExtent;
imageCI.mipLevels = 1;
imageCI.arrayLayers = 1;
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCI.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCI.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCI.usage = VK_IMAGE_USAGE_SHADING_RATE_IMAGE_BIT_NV | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &shadingRateImage.image));
VkMemoryRequirements memReqs{};
vkGetImageMemoryRequirements(device, shadingRateImage.image, &memReqs);
VkDeviceSize bufferSize = imageExtent.width * imageExtent.height * sizeof(uint8_t);
VkMemoryAllocateInfo memAllloc{};
memAllloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAllloc.allocationSize = memReqs.size;
memAllloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllloc, nullptr, &shadingRateImage.memory));
VK_CHECK_RESULT(vkBindImageMemory(device, shadingRateImage.image, shadingRateImage.memory, 0));
VkImageViewCreateInfo imageViewCI{};
imageViewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
imageViewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
imageViewCI.image = shadingRateImage.image;
imageViewCI.format = VK_FORMAT_R8_UINT;
imageViewCI.subresourceRange.baseMipLevel = 0;
imageViewCI.subresourceRange.levelCount = 1;
imageViewCI.subresourceRange.baseArrayLayer = 0;
imageViewCI.subresourceRange.layerCount = 1;
imageViewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VK_CHECK_RESULT(vkCreateImageView(device, &imageViewCI, nullptr, &shadingRateImage.view));
// Populate with lowest possible shading rate pattern
uint8_t val = VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_4X4_PIXELS_NV;
uint8_t* shadingRatePatternData = new uint8_t[bufferSize];
memset(shadingRatePatternData, val, bufferSize);
// Create a circular pattern with decreasing sampling rates outwards (max. range, pattern)
std::map<float, VkShadingRatePaletteEntryNV> patternLookup = {
{ 8.0f, VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_PIXEL_NV },
{ 12.0f, VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X1_PIXELS_NV },
{ 16.0f, VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_1X2_PIXELS_NV },
{ 18.0f, VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X2_PIXELS_NV },
{ 20.0f, VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_4X2_PIXELS_NV },
{ 24.0f, VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X4_PIXELS_NV }
};
uint8_t* ptrData = shadingRatePatternData;
for (uint32_t y = 0; y < imageExtent.height; y++) {
for (uint32_t x = 0; x < imageExtent.width; x++) {
const float deltaX = (float)imageExtent.width / 2.0f - (float)x;
const float deltaY = ((float)imageExtent.height / 2.0f - (float)y) * ((float)width / (float)height);
const float dist = std::sqrt(deltaX * deltaX + deltaY * deltaY);
for (auto pattern : patternLookup) {
if (dist < pattern.first) {
*ptrData = pattern.second;
break;
}
}
ptrData++;
}
}
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = bufferSize;
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
VkMemoryAllocateInfo memAllocInfo{};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memReqs = {};
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
uint8_t* mapped;
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void**)&mapped));
memcpy(mapped, shadingRatePatternData, bufferSize);
vkUnmapMemory(device, stagingMemory);
delete[] shadingRatePatternData;
// Upload
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = 1;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.image = shadingRateImage.image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
VkBufferImageCopy bufferCopyRegion{};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = imageExtent.width;
bufferCopyRegion.imageExtent.height = imageExtent.height;
bufferCopyRegion.imageExtent.depth = 1;
vkCmdCopyBufferToImage(copyCmd, stagingBuffer, shadingRateImage.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &bufferCopyRegion);
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.image = shadingRateImage.image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
vkFreeMemory(device, stagingMemory, nullptr);
vkDestroyBuffer(device, stagingBuffer, nullptr);
}
void VulkanExample::preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color, vkglTF::VertexComponent::Tangent });
shaderStages[0] = loadShader(getShadersPath() + "variablerateshading/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "variablerateshading/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Properties for alpha masked materials will be passed via specialization constants
struct SpecializationData {
VkBool32 alphaMask;
float alphaMaskCutoff;
} specializationData;
specializationData.alphaMask = false;
specializationData.alphaMaskCutoff = 0.5f;
const std::vector<VkSpecializationMapEntry> specializationMapEntries = {
vks::initializers::specializationMapEntry(0, offsetof(SpecializationData, alphaMask), sizeof(SpecializationData::alphaMask)),
vks::initializers::specializationMapEntry(1, offsetof(SpecializationData, alphaMaskCutoff), sizeof(SpecializationData::alphaMaskCutoff)),
};
VkSpecializationInfo specializationInfo = vks::initializers::specializationInfo(specializationMapEntries, sizeof(specializationData), &specializationData);
shaderStages[1].pSpecializationInfo = &specializationInfo;
// Create pipeline without shading rate
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &basePipelines.opaque));
specializationData.alphaMask = true;
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &basePipelines.masked));
rasterizationStateCI.cullMode = VK_CULL_MODE_BACK_BIT;
specializationData.alphaMask = false;
// Create pipeline with shading rate enabled
// [POI] Possible per-Viewport shading rate palette entries
const std::vector<VkShadingRatePaletteEntryNV> shadingRatePaletteEntries = {
VK_SHADING_RATE_PALETTE_ENTRY_NO_INVOCATIONS_NV,
VK_SHADING_RATE_PALETTE_ENTRY_16_INVOCATIONS_PER_PIXEL_NV,
VK_SHADING_RATE_PALETTE_ENTRY_8_INVOCATIONS_PER_PIXEL_NV,
VK_SHADING_RATE_PALETTE_ENTRY_4_INVOCATIONS_PER_PIXEL_NV,
VK_SHADING_RATE_PALETTE_ENTRY_2_INVOCATIONS_PER_PIXEL_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_PIXEL_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X1_PIXELS_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_1X2_PIXELS_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X2_PIXELS_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_4X2_PIXELS_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X4_PIXELS_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_4X4_PIXELS_NV,
};
VkShadingRatePaletteNV shadingRatePalette{};
shadingRatePalette.shadingRatePaletteEntryCount = static_cast<uint32_t>(shadingRatePaletteEntries.size());
shadingRatePalette.pShadingRatePaletteEntries = shadingRatePaletteEntries.data();
VkPipelineViewportShadingRateImageStateCreateInfoNV pipelineViewportShadingRateImageStateCI{};
pipelineViewportShadingRateImageStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SHADING_RATE_IMAGE_STATE_CREATE_INFO_NV;
pipelineViewportShadingRateImageStateCI.shadingRateImageEnable = VK_TRUE;
pipelineViewportShadingRateImageStateCI.viewportCount = 1;
pipelineViewportShadingRateImageStateCI.pShadingRatePalettes = &shadingRatePalette;
viewportStateCI.pNext = &pipelineViewportShadingRateImageStateCI;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &shadingRatePipelines.opaque));
specializationData.alphaMask = true;
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &shadingRatePipelines.masked));
}
void VulkanExample::prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&shaderData.buffer,
sizeof(shaderData.values)));
VK_CHECK_RESULT(shaderData.buffer.map());
updateUniformBuffers();
}
void VulkanExample::updateUniformBuffers()
{
shaderData.values.projection = camera.matrices.perspective;
shaderData.values.view = camera.matrices.view;
shaderData.values.viewPos = camera.viewPos;
shaderData.values.colorShadingRate = colorShadingRate;
memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values));
}
void VulkanExample::prepare()
{
VulkanExampleBase::prepare();
loadAssets();
// [POI]
vkCmdBindShadingRateImageNV = reinterpret_cast<PFN_vkCmdBindShadingRateImageNV>(vkGetDeviceProcAddr(device, "vkCmdBindShadingRateImageNV"));
physicalDeviceShadingRateImagePropertiesNV.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADING_RATE_IMAGE_PROPERTIES_NV;
VkPhysicalDeviceProperties2 deviceProperties2{};
deviceProperties2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
deviceProperties2.pNext = &physicalDeviceShadingRateImagePropertiesNV;
vkGetPhysicalDeviceProperties2(physicalDevice, &deviceProperties2);
prepareShadingRateImage();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void VulkanExample::render()
{
renderFrame();
if (camera.updated) {
updateUniformBuffers();
}
}
void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay* overlay)
{
if (overlay->checkBox("Enable shading rate", &enableShadingRate)) {
buildCommandBuffers();
}
if (overlay->checkBox("Color shading rates", &colorShadingRate)) {
updateUniformBuffers();
}
}
VULKAN_EXAMPLE_MAIN()