677 lines
No EOL
22 KiB
C++
677 lines
No EOL
22 KiB
C++
/*
|
|
* Vulkan Example - Texture arrays and instanced rendering
|
|
*
|
|
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <time.h>
|
|
#include <vector>
|
|
|
|
#define GLM_FORCE_RADIANS
|
|
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
|
|
#include <vulkan/vulkan.h>
|
|
#include "vulkanexamplebase.h"
|
|
#include "VulkanTexture.hpp"
|
|
#include "VulkanBuffer.hpp"
|
|
|
|
#define VERTEX_BUFFER_BIND_ID 0
|
|
#define ENABLE_VALIDATION false
|
|
|
|
// Vertex layout for this example
|
|
struct Vertex {
|
|
float pos[3];
|
|
float uv[2];
|
|
};
|
|
|
|
class VulkanExample : public VulkanExampleBase
|
|
{
|
|
public:
|
|
// Number of array layers in texture array
|
|
// Also used as instance count
|
|
uint32_t layerCount;
|
|
vks::Texture textureArray;
|
|
|
|
struct {
|
|
VkPipelineVertexInputStateCreateInfo inputState;
|
|
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
} vertices;
|
|
|
|
vks::Buffer vertexBuffer;
|
|
vks::Buffer indexBuffer;
|
|
uint32_t indexCount;
|
|
|
|
vks::Buffer uniformBufferVS;
|
|
|
|
struct UboInstanceData {
|
|
// Model matrix
|
|
glm::mat4 model;
|
|
// Texture array index
|
|
// Vec4 due to padding
|
|
glm::vec4 arrayIndex;
|
|
};
|
|
|
|
struct {
|
|
// Global matrices
|
|
struct {
|
|
glm::mat4 projection;
|
|
glm::mat4 view;
|
|
} matrices;
|
|
// Seperate data for each instance
|
|
UboInstanceData *instance;
|
|
} uboVS;
|
|
|
|
|
|
VkPipeline pipeline;
|
|
VkPipelineLayout pipelineLayout;
|
|
VkDescriptorSet descriptorSet;
|
|
VkDescriptorSetLayout descriptorSetLayout;
|
|
|
|
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
zoom = -15.0f;
|
|
rotationSpeed = 0.25f;
|
|
rotation = { -15.0f, 35.0f, 0.0f };
|
|
title = "Texture arrays";
|
|
settings.overlay = true;
|
|
}
|
|
|
|
~VulkanExample()
|
|
{
|
|
// Clean up used Vulkan resources
|
|
// Note : Inherited destructor cleans up resources stored in base class
|
|
|
|
// Clean up texture resources
|
|
vkDestroyImageView(device, textureArray.view, nullptr);
|
|
vkDestroyImage(device, textureArray.image, nullptr);
|
|
vkDestroySampler(device, textureArray.sampler, nullptr);
|
|
vkFreeMemory(device, textureArray.deviceMemory, nullptr);
|
|
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
|
|
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
|
|
|
vertexBuffer.destroy();
|
|
indexBuffer.destroy();
|
|
|
|
uniformBufferVS.destroy();
|
|
|
|
delete[] uboVS.instance;
|
|
}
|
|
|
|
void loadTextureArray(std::string filename, VkFormat format)
|
|
{
|
|
#if defined(__ANDROID__)
|
|
// Textures are stored inside the apk on Android (compressed)
|
|
// So they need to be loaded via the asset manager
|
|
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
|
assert(asset);
|
|
size_t size = AAsset_getLength(asset);
|
|
assert(size > 0);
|
|
|
|
void *textureData = malloc(size);
|
|
AAsset_read(asset, textureData, size);
|
|
AAsset_close(asset);
|
|
|
|
gli::texture2d_array tex2DArray(gli::load((const char*)textureData, size));
|
|
#else
|
|
gli::texture2d_array tex2DArray(gli::load(filename));
|
|
#endif
|
|
|
|
assert(!tex2DArray.empty());
|
|
|
|
textureArray.width = tex2DArray.extent().x;
|
|
textureArray.height = tex2DArray.extent().y;
|
|
layerCount = tex2DArray.layers();
|
|
|
|
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
|
|
// Create a host-visible staging buffer that contains the raw image data
|
|
VkBuffer stagingBuffer;
|
|
VkDeviceMemory stagingMemory;
|
|
|
|
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
|
|
bufferCreateInfo.size = tex2DArray.size();
|
|
// This buffer is used as a transfer source for the buffer copy
|
|
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
|
|
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
|
|
|
|
// Get memory requirements for the staging buffer (alignment, memory type bits)
|
|
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
|
|
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
// Get memory type index for a host visible buffer
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
|
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
|
|
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
|
|
|
|
// Copy texture data into staging buffer
|
|
uint8_t *data;
|
|
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
|
|
memcpy(data, tex2DArray.data(), tex2DArray.size());
|
|
vkUnmapMemory(device, stagingMemory);
|
|
|
|
// Setup buffer copy regions for array layers
|
|
std::vector<VkBufferImageCopy> bufferCopyRegions;
|
|
size_t offset = 0;
|
|
|
|
for (uint32_t layer = 0; layer < layerCount; layer++)
|
|
{
|
|
VkBufferImageCopy bufferCopyRegion = {};
|
|
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
bufferCopyRegion.imageSubresource.mipLevel = 0;
|
|
bufferCopyRegion.imageSubresource.baseArrayLayer = layer;
|
|
bufferCopyRegion.imageSubresource.layerCount = 1;
|
|
bufferCopyRegion.imageExtent.width = static_cast<uint32_t>(tex2DArray[layer][0].extent().x);
|
|
bufferCopyRegion.imageExtent.height = static_cast<uint32_t>(tex2DArray[layer][0].extent().y);
|
|
bufferCopyRegion.imageExtent.depth = 1;
|
|
bufferCopyRegion.bufferOffset = offset;
|
|
|
|
bufferCopyRegions.push_back(bufferCopyRegion);
|
|
|
|
// Increase offset into staging buffer for next level / face
|
|
offset += tex2DArray[layer][0].size();
|
|
}
|
|
|
|
// Create optimal tiled target image
|
|
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCreateInfo.format = format;
|
|
imageCreateInfo.mipLevels = 1;
|
|
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imageCreateInfo.extent = { textureArray.width, textureArray.height, 1 };
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
imageCreateInfo.arrayLayers = layerCount;
|
|
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &textureArray.image));
|
|
|
|
vkGetImageMemoryRequirements(device, textureArray.image, &memReqs);
|
|
|
|
memAllocInfo.allocationSize = memReqs.size;
|
|
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &textureArray.deviceMemory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, textureArray.image, textureArray.deviceMemory, 0));
|
|
|
|
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
|
|
// Image barrier for optimal image (target)
|
|
// Set initial layout for all array layers (faces) of the optimal (target) tiled texture
|
|
VkImageSubresourceRange subresourceRange = {};
|
|
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
subresourceRange.baseMipLevel = 0;
|
|
subresourceRange.levelCount = 1;
|
|
subresourceRange.layerCount = layerCount;
|
|
|
|
vks::tools::setImageLayout(
|
|
copyCmd,
|
|
textureArray.image,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
subresourceRange);
|
|
|
|
// Copy the cube map faces from the staging buffer to the optimal tiled image
|
|
vkCmdCopyBufferToImage(
|
|
copyCmd,
|
|
stagingBuffer,
|
|
textureArray.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
bufferCopyRegions.size(),
|
|
bufferCopyRegions.data()
|
|
);
|
|
|
|
// Change texture image layout to shader read after all faces have been copied
|
|
textureArray.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
vks::tools::setImageLayout(
|
|
copyCmd,
|
|
textureArray.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
textureArray.imageLayout,
|
|
subresourceRange);
|
|
|
|
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
|
|
|
|
// Create sampler
|
|
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
|
|
sampler.magFilter = VK_FILTER_LINEAR;
|
|
sampler.minFilter = VK_FILTER_LINEAR;
|
|
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
sampler.addressModeV = sampler.addressModeU;
|
|
sampler.addressModeW = sampler.addressModeU;
|
|
sampler.mipLodBias = 0.0f;
|
|
sampler.maxAnisotropy = 8;
|
|
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
|
sampler.minLod = 0.0f;
|
|
sampler.maxLod = 0.0f;
|
|
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &textureArray.sampler));
|
|
|
|
// Create image view
|
|
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
|
|
view.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
|
|
view.format = format;
|
|
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
|
|
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
|
view.subresourceRange.layerCount = layerCount;
|
|
view.subresourceRange.levelCount = 1;
|
|
view.image = textureArray.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &textureArray.view));
|
|
|
|
// Clean up staging resources
|
|
vkFreeMemory(device, stagingMemory, nullptr);
|
|
vkDestroyBuffer(device, stagingBuffer, nullptr);
|
|
}
|
|
|
|
void loadTextures()
|
|
{
|
|
// Vulkan core supports three different compressed texture formats
|
|
// As the support differs between implemementations we need to check device features and select a proper format and file
|
|
std::string filename;
|
|
VkFormat format;
|
|
if (deviceFeatures.textureCompressionBC) {
|
|
filename = "texturearray_bc3_unorm.ktx";
|
|
format = VK_FORMAT_BC3_UNORM_BLOCK;
|
|
}
|
|
else if (deviceFeatures.textureCompressionASTC_LDR) {
|
|
filename = "texturearray_astc_8x8_unorm.ktx";
|
|
format = VK_FORMAT_ASTC_8x8_UNORM_BLOCK;
|
|
}
|
|
else if (deviceFeatures.textureCompressionETC2) {
|
|
filename = "texturearray_etc2_unorm.ktx";
|
|
format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
|
|
}
|
|
else {
|
|
vks::tools::exitFatal("Device does not support any compressed texture format!", VK_ERROR_FEATURE_NOT_PRESENT);
|
|
}
|
|
loadTextureArray(getAssetPath() + "textures/" + filename, format);
|
|
}
|
|
|
|
void buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
// Set target frame buffer
|
|
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
|
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
|
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets);
|
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
|
|
|
|
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, layerCount, 0, 0, 0);
|
|
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void generateQuad()
|
|
{
|
|
// Setup vertices for a single uv-mapped quad made from two triangles
|
|
std::vector<Vertex> vertices =
|
|
{
|
|
{ { 2.5f, 2.5f, 0.0f }, { 1.0f, 1.0f } },
|
|
{ { -2.5f, 2.5f, 0.0f }, { 0.0f, 1.0f } },
|
|
{ { -2.5f, -2.5f, 0.0f }, { 0.0f, 0.0f } },
|
|
{ { 2.5f, -2.5f, 0.0f }, { 1.0f, 0.0f } }
|
|
};
|
|
|
|
// Setup indices
|
|
std::vector<uint32_t> indices = { 0,1,2, 2,3,0 };
|
|
indexCount = static_cast<uint32_t>(indices.size());
|
|
|
|
// Create buffers
|
|
// For the sake of simplicity we won't stage the vertex data to the gpu memory
|
|
// Vertex buffer
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&vertexBuffer,
|
|
vertices.size() * sizeof(Vertex),
|
|
vertices.data()));
|
|
// Index buffer
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&indexBuffer,
|
|
indices.size() * sizeof(uint32_t),
|
|
indices.data()));
|
|
}
|
|
|
|
void setupVertexDescriptions()
|
|
{
|
|
// Binding description
|
|
vertices.bindingDescriptions.resize(1);
|
|
vertices.bindingDescriptions[0] =
|
|
vks::initializers::vertexInputBindingDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
sizeof(Vertex),
|
|
VK_VERTEX_INPUT_RATE_VERTEX);
|
|
|
|
// Attribute descriptions
|
|
// Describes memory layout and shader positions
|
|
vertices.attributeDescriptions.resize(2);
|
|
// Location 0 : Position
|
|
vertices.attributeDescriptions[0] =
|
|
vks::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
0,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
0);
|
|
// Location 1 : Texture coordinates
|
|
vertices.attributeDescriptions[1] =
|
|
vks::initializers::vertexInputAttributeDescription(
|
|
VERTEX_BUFFER_BIND_ID,
|
|
1,
|
|
VK_FORMAT_R32G32_SFLOAT,
|
|
sizeof(float) * 3);
|
|
|
|
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
|
|
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
|
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
|
|
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
|
}
|
|
|
|
void setupDescriptorPool()
|
|
{
|
|
std::vector<VkDescriptorPoolSize> poolSizes =
|
|
{
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
|
|
};
|
|
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
|
vks::initializers::descriptorPoolCreateInfo(
|
|
poolSizes.size(),
|
|
poolSizes.data(),
|
|
2);
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
}
|
|
|
|
void setupDescriptorSetLayout()
|
|
{
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
|
|
{
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
0),
|
|
// Binding 1 : Fragment shader image sampler (texture array)
|
|
vks::initializers::descriptorSetLayoutBinding(
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
1)
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
|
vks::initializers::descriptorSetLayoutCreateInfo(
|
|
setLayoutBindings.data(),
|
|
setLayoutBindings.size());
|
|
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
|
|
|
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
|
vks::initializers::pipelineLayoutCreateInfo(
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
|
|
}
|
|
|
|
void setupDescriptorSet()
|
|
{
|
|
VkDescriptorSetAllocateInfo allocInfo =
|
|
vks::initializers::descriptorSetAllocateInfo(
|
|
descriptorPool,
|
|
&descriptorSetLayout,
|
|
1);
|
|
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
|
|
|
// Image descriptor for the texture array
|
|
VkDescriptorImageInfo textureDescriptor =
|
|
vks::initializers::descriptorImageInfo(
|
|
textureArray.sampler,
|
|
textureArray.view,
|
|
textureArray.imageLayout);
|
|
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
|
|
{
|
|
// Binding 0 : Vertex shader uniform buffer
|
|
vks::initializers::writeDescriptorSet(
|
|
descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
0,
|
|
&uniformBufferVS.descriptor),
|
|
// Binding 1 : Fragment shader cubemap sampler
|
|
vks::initializers::writeDescriptorSet(
|
|
descriptorSet,
|
|
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
1,
|
|
&textureDescriptor)
|
|
};
|
|
|
|
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
|
}
|
|
|
|
void preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
|
vks::initializers::pipelineInputAssemblyStateCreateInfo(
|
|
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
|
0,
|
|
VK_FALSE);
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
|
vks::initializers::pipelineRasterizationStateCreateInfo(
|
|
VK_POLYGON_MODE_FILL,
|
|
VK_CULL_MODE_NONE,
|
|
VK_FRONT_FACE_COUNTER_CLOCKWISE,
|
|
0);
|
|
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
|
vks::initializers::pipelineColorBlendAttachmentState(
|
|
0xf,
|
|
VK_FALSE);
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
|
vks::initializers::pipelineColorBlendStateCreateInfo(
|
|
1,
|
|
&blendAttachmentState);
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
|
vks::initializers::pipelineDepthStencilStateCreateInfo(
|
|
VK_TRUE,
|
|
VK_TRUE,
|
|
VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState =
|
|
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampleState =
|
|
vks::initializers::pipelineMultisampleStateCreateInfo(
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
0);
|
|
|
|
std::vector<VkDynamicState> dynamicStateEnables = {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR
|
|
};
|
|
VkPipelineDynamicStateCreateInfo dynamicState =
|
|
vks::initializers::pipelineDynamicStateCreateInfo(
|
|
dynamicStateEnables.data(),
|
|
dynamicStateEnables.size(),
|
|
0);
|
|
|
|
// Instacing pipeline
|
|
// Load shaders
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
shaderStages[0] = loadShader(getAssetPath() + "shaders/texturearray/instancing.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getAssetPath() + "shaders/texturearray/instancing.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
|
vks::initializers::pipelineCreateInfo(
|
|
pipelineLayout,
|
|
renderPass,
|
|
0);
|
|
|
|
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
|
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
pipelineCreateInfo.pViewportState = &viewportState;
|
|
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
pipelineCreateInfo.stageCount = shaderStages.size();
|
|
pipelineCreateInfo.pStages = shaderStages.data();
|
|
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
|
|
}
|
|
|
|
void prepareUniformBuffers()
|
|
{
|
|
uboVS.instance = new UboInstanceData[layerCount];
|
|
|
|
uint32_t uboSize = sizeof(uboVS.matrices) + (layerCount * sizeof(UboInstanceData));
|
|
|
|
// Vertex shader uniform buffer block
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&uniformBufferVS,
|
|
uboSize));
|
|
|
|
// Array indices and model matrices are fixed
|
|
float offset = -1.5f;
|
|
float center = (layerCount*offset) / 2;
|
|
for (int32_t i = 0; i < layerCount; i++)
|
|
{
|
|
// Instance model matrix
|
|
uboVS.instance[i].model = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, i * offset - center, 0.0f));
|
|
uboVS.instance[i].model = glm::rotate(uboVS.instance[i].model, glm::radians(60.0f), glm::vec3(1.0f, 0.0f, 0.0f));
|
|
// Instance texture array index
|
|
uboVS.instance[i].arrayIndex.x = i;
|
|
}
|
|
|
|
// Update instanced part of the uniform buffer
|
|
uint8_t *pData;
|
|
uint32_t dataOffset = sizeof(uboVS.matrices);
|
|
uint32_t dataSize = layerCount * sizeof(UboInstanceData);
|
|
VK_CHECK_RESULT(vkMapMemory(device, uniformBufferVS.memory, dataOffset, dataSize, 0, (void **)&pData));
|
|
memcpy(pData, uboVS.instance, dataSize);
|
|
vkUnmapMemory(device, uniformBufferVS.memory);
|
|
|
|
// Map persistent
|
|
VK_CHECK_RESULT(uniformBufferVS.map());
|
|
|
|
updateUniformBufferMatrices();
|
|
}
|
|
|
|
void updateUniformBufferMatrices()
|
|
{
|
|
// Only updates the uniform buffer block part containing the global matrices
|
|
|
|
// Projection
|
|
uboVS.matrices.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f);
|
|
|
|
// View
|
|
uboVS.matrices.view = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, -1.0f, zoom));
|
|
uboVS.matrices.view = glm::rotate(uboVS.matrices.view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
|
|
uboVS.matrices.view = glm::rotate(uboVS.matrices.view, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
|
|
uboVS.matrices.view = glm::rotate(uboVS.matrices.view, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
|
|
|
|
// Only update the matrices part of the uniform buffer
|
|
memcpy(uniformBufferVS.mapped, &uboVS.matrices, sizeof(uboVS.matrices));
|
|
}
|
|
|
|
void draw()
|
|
{
|
|
VulkanExampleBase::prepareFrame();
|
|
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
|
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
|
|
|
VulkanExampleBase::submitFrame();
|
|
}
|
|
|
|
void prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
loadTextures();
|
|
setupVertexDescriptions();
|
|
generateQuad();
|
|
prepareUniformBuffers();
|
|
setupDescriptorSetLayout();
|
|
preparePipelines();
|
|
setupDescriptorPool();
|
|
setupDescriptorSet();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
virtual void render()
|
|
{
|
|
if (!prepared)
|
|
return;
|
|
draw();
|
|
}
|
|
|
|
virtual void viewChanged()
|
|
{
|
|
updateUniformBufferMatrices();
|
|
}
|
|
};
|
|
|
|
VULKAN_EXAMPLE_MAIN() |