procedural-3d-engine/examples/computecloth/computecloth.cpp
2024-01-07 20:04:18 +01:00

722 lines
33 KiB
C++

/*
* Vulkan Example - Compute shader cloth simulation
*
* A compute shader updates a shader storage buffer that contains particles held together by springs and also does basic
* collision detection against a sphere. This storage buffer is then used as the vertex input for the graphics part of the sample
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
class VulkanExample : public VulkanExampleBase
{
public:
uint32_t readSet{ 0 };
uint32_t indexCount{ 0 };
bool simulateWind{ false };
// This will be set to true, if the device has a dedicated queue from a compute only queue family
// With such a queue graphics and compute workloads can run in parallel, but this also requires additional barriers (often called "async compute")
// These barriers will release and acquire the resources used in graphics and compute between the different queue families
bool dedicatedComputeQueue{ false };
vks::Texture2D textureCloth;
vkglTF::Model modelSphere;
// The cloth is made from a grid of particles
struct Particle {
glm::vec4 pos;
glm::vec4 vel;
glm::vec4 uv;
glm::vec4 normal;
};
// Cloth definition parameters
struct Cloth {
glm::uvec2 gridsize{ 60, 60 };
glm::vec2 size{ 5.0f, 5.0f };
} cloth;
// We put the resource "types" into structs to make this sample easier to understand
// We use two buffers for our cloth simulation: One with the input cloth data and one for outputting updated values
// The compute pipeline will update the output buffer, and the graphics pipeline will it as a vertex buffer
struct StorageBuffers {
vks::Buffer input;
vks::Buffer output;
} storageBuffers;
// Resources for the graphics part of the example
struct Graphics {
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
struct Pipelines {
VkPipeline cloth{ VK_NULL_HANDLE };
VkPipeline sphere{ VK_NULL_HANDLE };
} pipelines;
// The vertices will be stored in the shader storage buffers, so we only need an index buffer in this structure
vks::Buffer indices;
struct UniformData {
glm::mat4 projection;
glm::mat4 view;
glm::vec4 lightPos{ -2.0f, 4.0f, -2.0f, 1.0f };
} uniformData;
vks::Buffer uniformBuffer;
} graphics;
// Resources for the compute part of the example
struct Compute {
struct Semaphores {
VkSemaphore ready{ VK_NULL_HANDLE };
VkSemaphore complete{ VK_NULL_HANDLE };
} semaphores;
VkQueue queue{ VK_NULL_HANDLE };
VkCommandPool commandPool{ VK_NULL_HANDLE };
std::array<VkCommandBuffer, 2> commandBuffers{};
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
std::array<VkDescriptorSet, 2> descriptorSets{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkPipeline pipeline{ VK_NULL_HANDLE };
struct UniformData {
float deltaT{ 0.0f };
// These arguments define the spring setup for the cloth piece
// Changing these changes how the cloth reacts
float particleMass{ 0.1f };
float springStiffness{ 2000.0f };
float damping{ 0.25f };
float restDistH{ 0 };
float restDistV{ 0 };
float restDistD{ 0 };
float sphereRadius{ 1.0f };
glm::vec4 spherePos{ 0.0f, 0.0f, 0.0f, 0.0f };
glm::vec4 gravity{ 0.0f, 9.8f, 0.0f, 0.0f };
glm::ivec2 particleCount{ 0 };
} uniformData;
vks::Buffer uniformBuffer;
} compute;
VulkanExample() : VulkanExampleBase()
{
title = "Compute shader cloth simulation";
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(-30.0f, -45.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f));
}
~VulkanExample()
{
if (device) {
// Graphics
graphics.indices.destroy();
graphics.uniformBuffer.destroy();
vkDestroyPipeline(device, graphics.pipelines.cloth, nullptr);
vkDestroyPipeline(device, graphics.pipelines.sphere, nullptr);
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
textureCloth.destroy();
// Compute
compute.uniformBuffer.destroy();
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroyPipeline(device, compute.pipeline, nullptr);
vkDestroySemaphore(device, compute.semaphores.ready, nullptr);
vkDestroySemaphore(device, compute.semaphores.complete, nullptr);
vkDestroyCommandPool(device, compute.commandPool, nullptr);
// SSBOs
storageBuffers.input.destroy();
storageBuffers.output.destroy();
}
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
};
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
modelSphere.loadFromFile(getAssetPath() + "models/sphere.gltf", vulkanDevice, queue, glTFLoadingFlags);
textureCloth.loadFromFile(getAssetPath() + "textures/vulkan_cloth_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
void addGraphicsToComputeBarriers(VkCommandBuffer commandBuffer, VkAccessFlags srcAccessMask, VkAccessFlags dstAccessMask, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask)
{
if (dedicatedComputeQueue) {
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
bufferBarrier.srcAccessMask = srcAccessMask;
bufferBarrier.dstAccessMask = dstAccessMask;
bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
bufferBarrier.size = VK_WHOLE_SIZE;
std::vector<VkBufferMemoryBarrier> bufferBarriers;
bufferBarrier.buffer = storageBuffers.input.buffer;
bufferBarriers.push_back(bufferBarrier);
bufferBarrier.buffer = storageBuffers.output.buffer;
bufferBarriers.push_back(bufferBarrier);
vkCmdPipelineBarrier(commandBuffer,
srcStageMask,
dstStageMask,
VK_FLAGS_NONE,
0, nullptr,
static_cast<uint32_t>(bufferBarriers.size()), bufferBarriers.data(),
0, nullptr);
}
}
void addComputeToComputeBarriers(VkCommandBuffer commandBuffer)
{
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
bufferBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
bufferBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
bufferBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
bufferBarrier.size = VK_WHOLE_SIZE;
std::vector<VkBufferMemoryBarrier> bufferBarriers;
bufferBarrier.buffer = storageBuffers.input.buffer;
bufferBarriers.push_back(bufferBarrier);
bufferBarrier.buffer = storageBuffers.output.buffer;
bufferBarriers.push_back(bufferBarrier);
vkCmdPipelineBarrier(
commandBuffer,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
static_cast<uint32_t>(bufferBarriers.size()), bufferBarriers.data(),
0, nullptr);
}
void addComputeToGraphicsBarriers(VkCommandBuffer commandBuffer, VkAccessFlags srcAccessMask, VkAccessFlags dstAccessMask, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask)
{
if (dedicatedComputeQueue) {
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
bufferBarrier.srcAccessMask = srcAccessMask;
bufferBarrier.dstAccessMask = dstAccessMask;
bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
bufferBarrier.size = VK_WHOLE_SIZE;
std::vector<VkBufferMemoryBarrier> bufferBarriers;
bufferBarrier.buffer = storageBuffers.input.buffer;
bufferBarriers.push_back(bufferBarrier);
bufferBarrier.buffer = storageBuffers.output.buffer;
bufferBarriers.push_back(bufferBarrier);
vkCmdPipelineBarrier(
commandBuffer,
srcStageMask,
dstStageMask,
VK_FLAGS_NONE,
0, nullptr,
static_cast<uint32_t>(bufferBarriers.size()), bufferBarriers.data(),
0, nullptr);
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Acquire storage buffers from compute queue
addComputeToGraphicsBarriers(drawCmdBuffers[i], 0, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT);
// Draw the particle system using the update vertex buffer
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Render sphere
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.sphere);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
modelSphere.draw(drawCmdBuffers[i]);
// Render cloth
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.cloth);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
vkCmdBindIndexBuffer(drawCmdBuffers[i], graphics.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &storageBuffers.output.buffer, offsets);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
// release the storage buffers to the compute queue
addGraphicsToComputeBarriers(drawCmdBuffers[i], VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, 0, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void buildComputeCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
cmdBufInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
for (uint32_t i = 0; i < 2; i++) {
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffers[i], &cmdBufInfo));
// Acquire the storage buffers from the graphics queue
addGraphicsToComputeBarriers(compute.commandBuffers[i], 0, VK_ACCESS_SHADER_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
vkCmdBindPipeline(compute.commandBuffers[i], VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
uint32_t calculateNormals = 0;
vkCmdPushConstants(compute.commandBuffers[i], compute.pipelineLayout, VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(uint32_t), &calculateNormals);
// Dispatch the compute job
const uint32_t iterations = 64;
for (uint32_t j = 0; j < iterations; j++) {
readSet = 1 - readSet;
vkCmdBindDescriptorSets(compute.commandBuffers[i], VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSets[readSet], 0, 0);
if (j == iterations - 1) {
calculateNormals = 1;
vkCmdPushConstants(compute.commandBuffers[i], compute.pipelineLayout, VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(uint32_t), &calculateNormals);
}
vkCmdDispatch(compute.commandBuffers[i], cloth.gridsize.x / 10, cloth.gridsize.y / 10, 1);
// Don't add a barrier on the last iteration of the loop, since we'll have an explicit release to the graphics queue
if (j != iterations - 1) {
addComputeToComputeBarriers(compute.commandBuffers[i]);
}
}
// release the storage buffers back to the graphics queue
addComputeToGraphicsBarriers(compute.commandBuffers[i], VK_ACCESS_SHADER_WRITE_BIT, 0, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
vkEndCommandBuffer(compute.commandBuffers[i]);
}
}
// Setup and fill the shader storage buffers containing the particles
// These buffers are used as shader storage buffers in the compute shader (to update them) and as vertex input in the vertex shader (to display them)
void prepareStorageBuffers()
{
std::vector<Particle> particleBuffer(cloth.gridsize.x * cloth.gridsize.y);
float dx = cloth.size.x / (cloth.gridsize.x - 1);
float dy = cloth.size.y / (cloth.gridsize.y - 1);
float du = 1.0f / (cloth.gridsize.x - 1);
float dv = 1.0f / (cloth.gridsize.y - 1);
// Set up a flat cloth that falls onto sphere
glm::mat4 transM = glm::translate(glm::mat4(1.0f), glm::vec3(-cloth.size.x / 2.0f, -2.0f, -cloth.size.y / 2.0f));
for (uint32_t i = 0; i < cloth.gridsize.y; i++) {
for (uint32_t j = 0; j < cloth.gridsize.x; j++) {
particleBuffer[i + j * cloth.gridsize.y].pos = transM * glm::vec4(dx * j, 0.0f, dy * i, 1.0f);
particleBuffer[i + j * cloth.gridsize.y].vel = glm::vec4(0.0f);
particleBuffer[i + j * cloth.gridsize.y].uv = glm::vec4(1.0f - du * i, dv * j, 0.0f, 0.0f);
}
}
VkDeviceSize storageBufferSize = particleBuffer.size() * sizeof(Particle);
// Staging
// SSBO won't be changed on the host after upload so copy to device local memory
vks::Buffer stagingBuffer;
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
storageBufferSize,
particleBuffer.data());
// SSBOs will be used both as storage buffers (compute) and vertex buffers (graphics)
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&storageBuffers.input,
storageBufferSize);
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&storageBuffers.output,
storageBufferSize);
// Copy from staging buffer
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = storageBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, storageBuffers.output.buffer, 1, &copyRegion);
// Add an initial release barrier to the graphics queue,
// so that when the compute command buffer executes for the first time
// it doesn't complain about a lack of a corresponding "release" to its "acquire"
addGraphicsToComputeBarriers(copyCmd, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, 0, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
// Indices
std::vector<uint32_t> indices;
for (uint32_t y = 0; y < cloth.gridsize.y - 1; y++) {
for (uint32_t x = 0; x < cloth.gridsize.x; x++) {
indices.push_back((y + 1) * cloth.gridsize.x + x);
indices.push_back((y)*cloth.gridsize.x + x);
}
// Primitive restart (signaled by special value 0xFFFFFFFF)
indices.push_back(0xFFFFFFFF);
}
uint32_t indexBufferSize = static_cast<uint32_t>(indices.size()) * sizeof(uint32_t);
indexCount = static_cast<uint32_t>(indices.size());
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
indexBufferSize,
indices.data());
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&graphics.indices,
indexBufferSize);
// Copy from staging buffer
copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
copyRegion = {};
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, graphics.indices.buffer, 1, &copyRegion);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
}
// Prepare the resources used for the graphics part of the sample
void prepareGraphics()
{
// Uniform buffer for passing data to the vertex shader
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &graphics.uniformBuffer, sizeof(Graphics::UniformData));
VK_CHECK_RESULT(graphics.uniformBuffer.map());
// Descriptor pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
// Decscriptor set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &graphics.uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureCloth.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 0, VK_TRUE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
// Rendering pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "computecloth/cloth.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "computecloth/cloth.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(graphics.pipelineLayout, renderPass);
// Vertex Input
std::vector<VkVertexInputBindingDescription> inputBindings = {
vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX)
};
// Attribute descriptions based on the particles of the cloth
std::vector<VkVertexInputAttributeDescription> inputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Particle, pos)),
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Particle, uv)),
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Particle, normal))
};
// Assign to vertex buffer
VkPipelineVertexInputStateCreateInfo inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(inputBindings.size());
inputState.pVertexBindingDescriptions = inputBindings.data();
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(inputAttributes.size());
inputState.pVertexAttributeDescriptions = inputAttributes.data();
pipelineCreateInfo.pVertexInputState = &inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipelines.cloth));
// Sphere rendering pipeline
pipelineCreateInfo.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Normal });
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(inputAttributes.size());
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
inputAssemblyState.primitiveRestartEnable = VK_FALSE;
rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
shaderStages[0] = loadShader(getShadersPath() + "computecloth/sphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "computecloth/sphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipelines.sphere));
buildCommandBuffers();
}
// Prepare the resources used for the compute part of the sample
void prepareCompute()
{
// Create a compute capable device queue
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
// Uniform buffer for passing data to the compute shader
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(Compute::UniformData));
VK_CHECK_RESULT(compute.uniformBuffer.map());
// Set some initial values
float dx = cloth.size.x / (cloth.gridsize.x - 1);
float dy = cloth.size.y / (cloth.gridsize.y - 1);
compute.uniformData.restDistH = dx;
compute.uniformData.restDistV = dy;
compute.uniformData.restDistD = sqrtf(dx * dx + dy * dy);
compute.uniformData.particleCount = cloth.gridsize;
// Create compute pipeline
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1);
// Push constants used to pass some parameters
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_COMPUTE_BIT, sizeof(uint32_t), 0);
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1);
// Create two descriptor sets with input and output buffers switched
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSets[0]));
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSets[1]));
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets = {
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &storageBuffers.input.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &storageBuffers.output.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &compute.uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &storageBuffers.output.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &storageBuffers.input.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &compute.uniformBuffer.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, NULL);
// Create pipeline
VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computecloth/cloth.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline));
// Separate command pool as queue family for compute may be different than graphics
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
// Create a command buffer for compute operations
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 2);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffers[0]));
// Semaphores for graphics / compute synchronization
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphores.ready));
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphores.complete));
// Build a single command buffer containing the compute dispatch commands
buildComputeCommandBuffer();
}
void updateComputeUBO()
{
if (!paused) {
// SRS - Clamp frameTimer to max 20ms refresh period (e.g. if blocked on resize), otherwise image breakup can occur
compute.uniformData.deltaT = fmin(frameTimer, 0.02f) * 0.0025f;
if (simulateWind) {
std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> rd(1.0f, 12.0f);
compute.uniformData.gravity.x = cos(glm::radians(-timer * 360.0f)) * (rd(rndEngine) - rd(rndEngine));
compute.uniformData.gravity.z = sin(glm::radians(timer * 360.0f)) * (rd(rndEngine) - rd(rndEngine));
}
else {
compute.uniformData.gravity.x = 0.0f;
compute.uniformData.gravity.z = 0.0f;
}
}
else {
compute.uniformData.deltaT = 0.0f;
}
memcpy(compute.uniformBuffer.mapped, &compute.uniformData, sizeof(Compute::UniformData));
}
void updateGraphicsUBO()
{
graphics.uniformData.projection = camera.matrices.perspective;
graphics.uniformData.view = camera.matrices.view;
memcpy(graphics.uniformBuffer.mapped, &graphics.uniformData, sizeof(Graphics::UniformData));
}
void draw()
{
// As we use both graphics and compute, frame submission is a bit more involved
// We'll be using semaphores to synchronize between the compute shader updating the cloth and the graphics pipeline drawing it
static bool firstDraw = true;
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
VkPipelineStageFlags computeWaitDstStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
if (!firstDraw) {
computeSubmitInfo.waitSemaphoreCount = 1;
computeSubmitInfo.pWaitSemaphores = &compute.semaphores.ready;
computeSubmitInfo.pWaitDstStageMask = &computeWaitDstStageMask;
}
else {
firstDraw = false;
}
computeSubmitInfo.signalSemaphoreCount = 1;
computeSubmitInfo.pSignalSemaphores = &compute.semaphores.complete;
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &compute.commandBuffers[readSet];
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE));
// Submit graphics commands
VulkanExampleBase::prepareFrame();
VkPipelineStageFlags waitDstStageMask[2] = {
submitPipelineStages, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT
};
VkSemaphore waitSemaphores[2] = {
semaphores.presentComplete, compute.semaphores.complete
};
VkSemaphore signalSemaphores[2] = {
semaphores.renderComplete, compute.semaphores.ready
};
submitInfo.waitSemaphoreCount = 2;
submitInfo.pWaitDstStageMask = waitDstStageMask;
submitInfo.pWaitSemaphores = waitSemaphores;
submitInfo.signalSemaphoreCount = 2;
submitInfo.pSignalSemaphores = signalSemaphores;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
// Make sure the code works properly both with different queues families for graphics and compute and the same queue family
// You can use DEBUG_FORCE_SHARED_GRAPHICS_COMPUTE_QUEUE preprocessor define to force graphics and compute from the same queue family
#ifdef DEBUG_FORCE_SHARED_GRAPHICS_COMPUTE_QUEUE
vulkanDevice->queueFamilyIndices.compute = vulkanDevice->queueFamilyIndices.graphics;
#endif
// Check whether the compute queue family is distinct from the graphics queue family
dedicatedComputeQueue = vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute;
loadAssets();
prepareStorageBuffers();
prepareGraphics();
prepareCompute();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
updateGraphicsUBO();
updateComputeUBO();
draw();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay)
{
if (overlay->header("Settings")) {
overlay->checkBox("Simulate wind", &simulateWind);
}
}
};
VULKAN_EXAMPLE_MAIN()