procedural-3d-engine/shadowmapping/shadowmap.cpp
2016-02-28 22:26:11 +01:00

1358 lines
No EOL
47 KiB
C++

/*
* Vulkan Example - Offscreen rendering using a separate framebuffer
*
* Copyright (C) 2015 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "vulkanMeshLoader.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define USE_GLSL
#define ENABLE_VALIDATION true
// Texture properties
#define TEX_DIM 256
#define TEX_FORMAT VK_FORMAT_D16_UNORM
#define TEX_FILTER VK_FILTER_LINEAR
// Offscreen frame buffer properties
#define FB_DIM TEX_DIM
#define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM
#define FB_DEPTH_FORMAT TEX_FORMAT
class VulkanExample : public VulkanExampleBase
{
public:
bool paused = false;
bool displayShadowMap = true;
float timer = 0;
float zNear = 0.1f;
float zFar = 48.0f;
float depthBias = 0.0015f;
VulkanMeshLoader *demoMesh;
struct {
VkBuffer buf;
VkDeviceMemory mem;
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
int count;
VkBuffer buf;
VkDeviceMemory mem;
} indices;
vkTools::UniformData uniformDataVS, uniformDataOffscreenVS;
struct {
vkTools::UniformData scene;
} uniformData;
struct {
glm::mat4 projection;
glm::mat4 model;
} uboVSquad;
struct {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
glm::mat4 depthBiasMVP;
glm::vec4 lightPos = glm::vec4(0.0f, -10.0f, 0.0f, 1.0f);
} uboVSscene;
struct {
glm::mat4 depthMVP;
} uboOffscreenVS;
struct {
VkPipeline quad;
VkPipeline offscreen;
VkPipeline scene;
} pipelines;
struct {
VkPipelineLayout quad;
VkPipelineLayout offscreen;
} pipelineLayouts;
struct {
VkDescriptorSet offscreen;
VkDescriptorSet scene;
} descriptorSets;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
// Texture target for frame buffer blit
struct Texture {
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImage image;
VkImageView view;
VkSampler sampler, samplerCompare;
int32_t width, height;
} offScreenTex;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct FrameBuffer {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color, depth;
} offScreenFrameBuf;
VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE;
VkCommandBuffer copyCmdBuffer = VK_NULL_HANDLE;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -20.0f;
rotation = { -22.5f, -218.0f, 0.0f };
title = "Vulkan Example - Shadow mapping";
if (ENABLE_VALIDATION) {
setupConsole("VulkanExample");
}
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
// Texture target
vkDestroyImageView(device, offScreenTex.view, nullptr);
vkDestroyImage(device, offScreenTex.image, nullptr);
vkDestroySampler(device, offScreenTex.sampler, nullptr);
vkFreeMemory(device, offScreenTex.deviceMemory, nullptr);
// Frame buffer
// Color attachment
vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr);
// Depth attachment
vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr);
vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr);
vkDestroyPipeline(device, pipelines.quad, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.quad, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Quad
vkDestroyBuffer(device, vertices.buf, nullptr);
vkFreeMemory(device, vertices.mem, nullptr);
vkDestroyBuffer(device, indices.buf, nullptr);
vkFreeMemory(device, indices.mem, nullptr);
// Mesh
VulkanMeshLoader::freeVulkanResources(device, demoMesh);
// Uniform buffers
vkDestroyBuffer(device, uniformDataVS.buffer, nullptr);
vkFreeMemory(device, uniformDataVS.memory, nullptr);
vkDestroyBuffer(device, uniformDataOffscreenVS.buffer, nullptr);
vkFreeMemory(device, uniformDataOffscreenVS.memory, nullptr);
vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer);
vkFreeCommandBuffers(device, cmdPool, 1, &copyCmdBuffer);
delete(demoMesh);
}
// Preapre an empty texture as the blit target from
// the offscreen framebuffer
void prepareTextureTarget(int32_t width, int32_t height, VkFormat format)
{
createSetupCommandBuffer();
VkResult err;
// Get device properites for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Check if format is supported for optimal tiling
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT);
// Prepare blit target texture
offScreenTex.width = width;
offScreenTex.height = height;
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageCreateInfo.flags = 0;
imageCreateInfo.pQueueFamilyIndices = 0;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &offScreenTex.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenTex.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex));
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &offScreenTex.deviceMemory);
assert(!err);
err = vkBindImageMemory(device, offScreenTex.image, offScreenTex.deviceMemory, 0);
assert(!err);
offScreenTex.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(
setupCmdBuffer,
offScreenTex.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
offScreenTex.imageLayout);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = TEX_FILTER;
sampler.minFilter = TEX_FILTER;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_BASE;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &offScreenTex.sampler);
assert(!err);
sampler.compareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
sampler.compareEnable = VK_TRUE;
err = vkCreateSampler(device, &sampler, nullptr, &offScreenTex.samplerCompare);
assert(!err);
vkTools::setImageLayout(
setupCmdBuffer,
offScreenTex.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
flushSetupCommandBuffer();
// Create image view
VkImageViewCreateInfo view = {};
view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, 0, 1 };
view.image = offScreenTex.image;
err = vkCreateImageView(device, &view, nullptr, &offScreenTex.view);
assert(!err);
}
// Prepare a new framebuffer for offscreen rendering
// The contents of this framebuffer are then
// blitted to our render target
void prepareOffscreenFramebuffer()
{
offScreenFrameBuf.width = FB_DIM;
offScreenFrameBuf.height = FB_DIM;
VkFormat fbColorFormat = FB_COLOR_FORMAT;
VkFormat fbDepthFormat = FB_DEPTH_FORMAT;
VkResult err;
// Get device properites for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, fbDepthFormat, &formatProperties);
// Check if format is supported for optimal tiling
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT);
createSetupCommandBuffer();
// Color attachment
VkImageCreateInfo image = vkTools::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = fbColorFormat;
image.extent.width = offScreenFrameBuf.width;
image.extent.height = offScreenFrameBuf.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
// Image of the framebuffer is blit source
image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image.flags = 0;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = fbColorFormat;
colorImageView.flags = 0;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
VkMemoryRequirements memReqs;
err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.color.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex));
err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem);
assert(!err);
err = vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0);
assert(!err);
vkTools::setImageLayout(
setupCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
colorImageView.image = offScreenFrameBuf.color.image;
err = vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view);
assert(!err);
// Depth stencil attachment
image.format = fbDepthFormat;
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image.initialLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = fbDepthFormat;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.depth.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex));
err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem);
assert(!err);
err = vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0);
assert(!err);
vkTools::setImageLayout(
setupCmdBuffer,
offScreenFrameBuf.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
flushSetupCommandBuffer();
depthStencilView.image = offScreenFrameBuf.depth.image;
err = vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view);
assert(!err);
VkImageView attachments[2];
attachments[0] = offScreenFrameBuf.color.view;
attachments[1] = offScreenFrameBuf.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = {};
fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbufCreateInfo.pNext = NULL;
fbufCreateInfo.renderPass = renderPass;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.width = offScreenFrameBuf.width;
fbufCreateInfo.height = offScreenFrameBuf.height;
fbufCreateInfo.layers = 1;
err = vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer);
assert(!err);
}
// The command buffer to copy for rendering
// the offscreen scene and blitting it into
// the texture target is only build once
// and gets resubmitted
void buildOffscreenCommandBuffer()
{
VkResult err;
// Create separate command buffer for offscreen
// rendering
if (offScreenCmdBuffer == VK_NULL_HANDLE)
{
VkCommandBufferAllocateInfo cmd = vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult vkRes = vkAllocateCommandBuffers(device, &cmd, &offScreenCmdBuffer);
assert(!vkRes);
vkRes = vkAllocateCommandBuffers(device, &cmd, &copyCmdBuffer);
assert(!vkRes);
}
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = {};
renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassBeginInfo.pNext = NULL;
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width;
renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
err = vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo);
assert(!err);
VkViewport viewport = vkTools::initializers::viewport(
(float)offScreenFrameBuf.width,
(float)offScreenFrameBuf.height,
0.0f,
1.0f);
vkCmdSetViewport(offScreenCmdBuffer, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
offScreenFrameBuf.width,
offScreenFrameBuf.height,
0,
0);
vkCmdSetScissor(offScreenCmdBuffer, 1, &scissor);
// Depth bias (aka "Polygon offset") - I just hope this works
vkCmdSetDepthBias(
offScreenCmdBuffer,
depthBias,
0.5f,
1.0f/depthBias);
vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &demoMesh->vertexBuffer.buf, offsets);
vkCmdBindIndexBuffer(offScreenCmdBuffer, demoMesh->indexBuffer.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
vkCmdDrawIndexed(offScreenCmdBuffer, demoMesh->indexBuffer.count, 1, 0, 0, 0);
vkCmdEndRenderPass(offScreenCmdBuffer);
err = vkEndCommandBuffer(offScreenCmdBuffer);
assert(!err);
err = vkBeginCommandBuffer(copyCmdBuffer, &cmdBufInfo);
assert(!err);
updateTexture();
err = vkEndCommandBuffer(copyCmdBuffer);
assert(!err);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.quad);
// Visualize shadow map
if (displayShadowMap)
{
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 0);
}
// 3D scene
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSets.scene, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.scene);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &demoMesh->vertexBuffer.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], demoMesh->indexBuffer.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], demoMesh->indexBuffer.count, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
VkSemaphore presentCompleteSemaphore;
VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo =
vkTools::initializers::semaphoreCreateInfo(VK_FENCE_CREATE_SIGNALED_BIT);
err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, nullptr, &presentCompleteSemaphore);
assert(!err);
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(presentCompleteSemaphore, &currentBuffer);
assert(!err);
// Gather command buffers to be sumitted to the queue
std::vector<VkCommandBuffer> submitCmdBuffers = {
drawCmdBuffers[currentBuffer],
offScreenCmdBuffer,
copyCmdBuffer
};
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &presentCompleteSemaphore;
submitInfo.commandBufferCount = submitCmdBuffers.size();
submitInfo.pCommandBuffers = submitCmdBuffers.data();
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
err = swapChain.queuePresent(queue, currentBuffer);
assert(!err);
vkDestroySemaphore(device, presentCompleteSemaphore, nullptr);
err = vkQueueWaitIdle(queue);
assert(err == VK_SUCCESS);
}
void prepareVertices()
{
struct Vertex {
float pos[3];
float uv[2];
float col[3];
float normal[3];
};
// Setup vertices for a single uv-mapped quad
#define dim 1.0f
#define quadcol { 1.0f, 1.0f, 1.0f }
#define quadnormal { 0.0f, 0.0f, 1.0f }
std::vector<Vertex> vertexBuffer =
{
{ { dim, 0.0f, 0.0f },{ 1.0f, 0.0f }, quadcol, quadnormal },
{ { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f }, quadcol, quadnormal },
{ { 0.0f, dim, 0.0f },{ 0.0f, 1.0f }, quadcol, quadnormal },
{ { dim, dim, 0.0f },{ 1.0f, 1.0f }, quadcol, quadnormal }
};
#undef dim
#undef quadcol
#undef quadnormal
int vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
// Setup indices
std::vector<uint32_t> indexBuffer = { 0,1,2, 2,3,0 };
int indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkResult err;
void *data;
// Generate vertex buffer
VkBufferCreateInfo vBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBufferSize);
err = vkCreateBuffer(device, &vBufferInfo, nullptr, &vertices.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, vertices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex));
err = vkAllocateMemory(device, &memAlloc, nullptr, &vertices.mem);
assert(!err);
err = vkMapMemory(device, vertices.mem, 0, vertexBufferSize, 0, &data);
assert(!err);
memcpy(data, vertexBuffer.data(), vertexBufferSize);
vkUnmapMemory(device, vertices.mem);
err = vkBindBufferMemory(device, vertices.buf, vertices.mem, 0);
assert(!err);
// Generate index buffer
VkBufferCreateInfo iBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBufferSize);
err = vkCreateBuffer(device, &iBufferInfo, nullptr, &indices.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, indices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex));
err = vkAllocateMemory(device, &memAlloc, nullptr, &indices.mem);
assert(!err);
err = vkMapMemory(device, indices.mem, 0, indexBufferSize, 0, &data);
assert(!err);
memcpy(data, indexBuffer.data(), indexBufferSize);
vkUnmapMemory(device, indices.mem);
err = vkBindBufferMemory(device, indices.buf, indices.mem, 0);
assert(!err);
indices.count = indexBuffer.size();
// Example mesh
demoMesh = new VulkanMeshLoader();
demoMesh->LoadMesh("./../data/models/shadowscene_omni.X");
float scale = 0.25f;
vertexBuffer.clear();
for (int m = 0; m < demoMesh->m_Entries.size(); m++)
{
for (int i = 0; i < demoMesh->m_Entries[m].Vertices.size(); i++)
{
glm::vec3 pos = demoMesh->m_Entries[m].Vertices[i].m_pos * scale;
glm::vec3 normal = demoMesh->m_Entries[m].Vertices[i].m_normal;
glm::vec2 uv = demoMesh->m_Entries[m].Vertices[i].m_tex;
glm::vec3 col = demoMesh->m_Entries[m].Vertices[i].m_color;
Vertex vert =
{
{ pos.x, pos.y, pos.z },
{ uv.s, uv.t },
{ col.r, col.g, col.b },
{ normal.x, -normal.y, normal.z }
};
vertexBuffer.push_back(vert);
}
}
vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
indexBuffer.clear();
for (int m = 0; m < demoMesh->m_Entries.size(); m++)
{
int indexBase = indexBuffer.size();
for (int i = 0; i < demoMesh->m_Entries[m].Indices.size(); i++) {
indexBuffer.push_back(demoMesh->m_Entries[m].Indices[i] + indexBase);
}
}
indexBufferSize = indexBuffer.size() * sizeof(UINT32);
// Generate vertex buffer
vBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBufferSize);
err = vkCreateBuffer(device, &vBufferInfo, nullptr, &demoMesh->vertexBuffer.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, demoMesh->vertexBuffer.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex));
err = vkAllocateMemory(device, &memAlloc, nullptr, &demoMesh->vertexBuffer.mem);
assert(!err);
err = vkMapMemory(device, demoMesh->vertexBuffer.mem, 0, vertexBufferSize, 0, &data);
assert(!err);
memcpy(data, vertexBuffer.data(), vertexBufferSize);
vkUnmapMemory(device, demoMesh->vertexBuffer.mem);
err = vkBindBufferMemory(device, demoMesh->vertexBuffer.buf, demoMesh->vertexBuffer.mem, 0);
assert(!err);
// Generate index buffer
iBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBufferSize);
err = vkCreateBuffer(device, &iBufferInfo, nullptr, &demoMesh->indexBuffer.buf);
assert(!err);
vkGetBufferMemoryRequirements(device, demoMesh->indexBuffer.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex));
err = vkAllocateMemory(device, &memAlloc, nullptr, &demoMesh->indexBuffer.mem);
assert(!err);
err = vkMapMemory(device, demoMesh->indexBuffer.mem, 0, indexBufferSize, 0, &data);
assert(!err);
memcpy(data, indexBuffer.data(), indexBufferSize);
vkUnmapMemory(device, demoMesh->indexBuffer.mem);
err = vkBindBufferMemory(device, demoMesh->indexBuffer.buf, demoMesh->indexBuffer.mem, 0);
assert(!err);
demoMesh->indexBuffer.count = indexBuffer.size();
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Color
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 5);
// Location 3 : Normal
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses three ubos and two image samplers
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
3);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
// Textured quad pipeline layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.quad);
assert(!err);
// Offscreen pipeline layout
// TODO : Actually the same as the normal one...
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen);
assert(!err);
}
void setupDescriptorSets()
{
// Textured quad descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
// Image descriptor for the shadow map texture
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
offScreenTex.sampler,
offScreenTex.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformDataVS.descriptor),
// Binding 1 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Offscreen
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen);
assert(!vkRes);
std::vector<VkWriteDescriptorSet> offScreenWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.offscreen,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformDataOffscreenVS.descriptor),
};
vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL);
// 3D scene
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene);
assert(!vkRes);
// Image descriptor for the shadow map texture
texDescriptor.sampler = offScreenTex.samplerCompare;
std::vector<VkWriteDescriptorSet> sceneDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.scene,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.scene.descriptor),
// Binding 1 : Fragment shader shadow sampler
vkTools::initializers::writeDescriptorSet(
descriptorSets.scene,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptor)
};
vkUpdateDescriptorSets(device, sceneDescriptorSets.size(), sceneDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Solid rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
#ifdef USE_GLSL
shaderStages[0] = loadShaderGLSL("./../data/shaders/shadowmap/quad.vert", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShaderGLSL("./../data/shaders/shadowmap/quad.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[0] = loadShader("./../data/shaders/shadowmap/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/shadowmap/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayouts.quad,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.quad);
assert(!err);
// 3D scene
#ifdef USE_GLSL
shaderStages[0] = loadShaderGLSL("./../data/shaders/shadowmap/scene.vert", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShaderGLSL("./../data/shaders/shadowmap/scene.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[0] = loadShader("./../data/shaders/shadowmap/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/shadowmap/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.scene);
assert(!err);
// Offscreen pipeline
#ifdef USE_GLSL
shaderStages[0] = loadShaderGLSL("./../data/shaders/shadowmap/offscreen.vert", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShaderGLSL("./../data/shaders/shadowmap/offscreen.frag", VK_SHADER_STAGE_FRAGMENT_BIT);
#else
shaderStages[0] = loadShader("./../data/shaders/shadowmap/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/shadowmap/offscreen.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
#endif
pipelineCreateInfo.layout = pipelineLayouts.offscreen;
depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS;
// Cull front faces
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
//rasterizationState.cullMode = VK_CULL_MODE_NONE;
rasterizationState.depthBiasEnable = VK_TRUE;
rasterizationState.depthBiasClamp = VK_TRUE;
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_DEPTH_BIAS);
dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen);
assert(!err);
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
VkResult err;
// Vertex shader uniform buffer block
VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkBufferCreateInfo bufferInfo = vkTools::initializers::bufferCreateInfo(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVSquad));
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataVS.buffer);
assert(!err);
vkGetBufferMemoryRequirements(device, uniformDataVS.buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex));
err = vkAllocateMemory(device, &allocInfo, nullptr, &uniformDataVS.memory);
assert(!err);
err = vkBindBufferMemory(device, uniformDataVS.buffer, uniformDataVS.memory, 0);
assert(!err);
uniformDataVS.descriptor.buffer = uniformDataVS.buffer;
uniformDataVS.descriptor.offset = 0;
uniformDataVS.descriptor.range = sizeof(uboVSquad);
// Offscreen vertex shader uniform buffer block
bufferInfo.size = sizeof(uboOffscreenVS);
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataOffscreenVS.buffer);
assert(!err);
vkGetBufferMemoryRequirements(device, uniformDataOffscreenVS.buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex));
err = vkAllocateMemory(device, &allocInfo, nullptr, &uniformDataOffscreenVS.memory);
assert(!err);
err = vkBindBufferMemory(device, uniformDataOffscreenVS.buffer, uniformDataOffscreenVS.memory, 0);
assert(!err);
uniformDataOffscreenVS.descriptor.buffer = uniformDataOffscreenVS.buffer;
uniformDataOffscreenVS.descriptor.offset = 0;
uniformDataOffscreenVS.descriptor.range = sizeof(uboOffscreenVS);
// 3D scene
bufferInfo.size = sizeof(uboVSscene);
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformData.scene.buffer);
assert(!err);
vkGetBufferMemoryRequirements(device, uniformData.scene.buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex));
err = vkAllocateMemory(device, &allocInfo, nullptr, &uniformData.scene.memory);
assert(!err);
err = vkBindBufferMemory(device, uniformData.scene.buffer, uniformData.scene.memory, 0);
assert(!err);
uniformData.scene.descriptor.buffer = uniformData.scene.buffer;
uniformData.scene.descriptor.offset = 0;
uniformData.scene.descriptor.range = sizeof(uboVSscene);
updateUniformBufferOffscreen();
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Shadow map debug quad
float AR = (float)height / (float)width;
uboVSquad.projection = glm::ortho(0.0f, 2.5f / AR, 0.0f, 2.5f, -1.0f, 1.0f);
// uboVSquad.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f);
uboVSquad.model = glm::mat4();
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVSquad), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVSquad, sizeof(uboVSquad));
vkUnmapMemory(device, uniformDataVS.memory);
// 3D scene
uboVSscene.projection = glm::perspective(deg_to_rad(45.0f), (float)width / (float)height, zNear, zFar);
uboVSscene.view = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
uboVSscene.model = glm::mat4();
uboVSscene.model = glm::rotate(uboVSscene.model, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVSscene.model = glm::rotate(uboVSscene.model, deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVSscene.model = glm::rotate(uboVSscene.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
glm::mat4 biasMat = glm::mat4(
glm::vec4(0.5f, 0.0f, 0.0f, 0.0f),
glm::vec4(0.0f, 0.5f, 0.0f, 0.0f),
glm::vec4(0.0f, 0.0f, 0.5f, 0.0f),
glm::vec4(0.5f, 0.5f, 0.5f, 1.0f)
);
uboVSscene.depthBiasMVP = biasMat * uboOffscreenVS.depthMVP;
pData;
err = vkMapMemory(device, uniformData.scene.memory, 0, sizeof(uboVSscene), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVSscene, sizeof(uboVSscene));
vkUnmapMemory(device, uniformData.scene.memory);
}
void updateUniformBufferOffscreen()
{
// Matrix from light's point of view
glm::vec3 lightInvDir = glm::vec3(0.5f, -2, 2);
glm::mat4 depthProjectionMatrix = glm::ortho<float>(-10, 10, -10, 10, -50, 30);
// glm::mat4 depthProjectionMatrix = glm::ortho<float>(-10, 10, -10, 10, -10, 20);
glm::mat4 depthViewMatrix = glm::lookAt(lightInvDir, glm::vec3(0, 0, 0), glm::vec3(0, 1, 0));
glm::mat4 depthModelMatrix = glm::mat4();
uboOffscreenVS.depthMVP = depthProjectionMatrix * depthViewMatrix * depthModelMatrix;
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataOffscreenVS.memory, 0, sizeof(uboOffscreenVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboOffscreenVS, sizeof(uboOffscreenVS));
vkUnmapMemory(device, uniformDataOffscreenVS.memory);
}
// Blits the contents of the offscreen framebuffer to
// our texture target
void updateTexture()
{
// Make sure depth writes to the offscreen buffer are finished
VkImageMemoryBarrier imageBarrier = vkTools::initializers::imageMemoryBarrier();
imageBarrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
imageBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imageBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imageBarrier.subresourceRange = { VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1 };
imageBarrier.image = offScreenFrameBuf.depth.image;
VkImageMemoryBarrier *preBarrier = &imageBarrier;
vkCmdPipelineBarrier(
copyCmdBuffer,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FALSE, 1, (const void * const*)&preBarrier);
VkImageCopy imgCopy = {};
imgCopy.srcSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
imgCopy.srcSubresource.mipLevel = 0;
imgCopy.srcSubresource.baseArrayLayer = 0;
imgCopy.srcSubresource.layerCount = 1;
imgCopy.srcOffset = { 0, 0, 0 };
imgCopy.dstSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
imgCopy.dstSubresource.mipLevel = 0;
imgCopy.dstSubresource.baseArrayLayer = 0;
imgCopy.dstSubresource.layerCount = 1;
imgCopy.dstOffset = { 0, 0, 0 };
imgCopy.extent.width = TEX_DIM;
imgCopy.extent.height = TEX_DIM;
imgCopy.extent.depth = 1;
vkCmdCopyImage(
copyCmdBuffer,
offScreenFrameBuf.depth.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
offScreenTex.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&imgCopy);
// Make sure transfer is finished
imageBarrier = vkTools::initializers::imageMemoryBarrier();
imageBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imageBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imageBarrier.subresourceRange = { VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, 0, 1 };
imageBarrier.image = offScreenTex.image;
VkImageMemoryBarrier *postBarrier = &imageBarrier;
vkCmdPipelineBarrier(
copyCmdBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
0, 1, (const void * const*)&postBarrier);
}
void prepare()
{
VulkanExampleBase::prepare();
prepareVertices();
prepareUniformBuffers();
prepareTextureTarget(TEX_DIM, TEX_DIM, TEX_FORMAT);
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
prepareOffscreenFramebuffer();
buildCommandBuffers();
buildOffscreenCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
if (!paused)
{
timer += 0.0015f; // TODO : Time based
if (timer > 1.0)
{
timer -= 1.0f;
}
updateUniformBufferOffscreen();
updateUniformBuffers();
}
}
virtual void viewChanged()
{
updateUniformBufferOffscreen();
updateUniformBuffers();
}
void changeDepthBias(float delta)
{
depthBias += delta;
buildOffscreenCommandBuffer();
}
};
VulkanExample *vulkanExample;
#ifdef _WIN32
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
if (uMsg == WM_KEYDOWN)
{
switch (wParam)
{
case 0x50:
vulkanExample->paused = !vulkanExample->paused;
break;
case 0x53:
vulkanExample->displayShadowMap = !vulkanExample->displayShadowMap;
break;
case VK_ADD:
vulkanExample->changeDepthBias(0.000025f);
break;
case VK_SUBTRACT:
vulkanExample->changeDepthBias(-0.000025f);
break;
}
}
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#else
static void handle_event(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handle_event(event);
}
}
#endif
#ifdef _WIN32
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#else
int main(const int argc, const char *argv[])
#endif
{
vulkanExample = new VulkanExample();
#ifdef _WIN32
vulkanExample->setupWindow(hInstance, WndProc, false);
#else
vulkanExample->setupWindow();
#endif
vulkanExample->initSwapchain();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}