procedural-3d-engine/particlefire/particlefire.cpp

865 lines
26 KiB
C++

/*
* Vulkan Example - CPU based fire particle system
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/matrix_inverse.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
#define PARTICLE_COUNT 512
#define PARTICLE_SIZE 10.0f
#define FLAME_RADIUS 8.0f
#define PARTICLE_TYPE_FLAME 0
#define PARTICLE_TYPE_SMOKE 1
struct Particle {
glm::vec4 pos;
glm::vec4 color;
float alpha;
float size;
float rotation;
uint32_t type;
// Attributes not used in shader
glm::vec4 vel;
float rotationSpeed;
};
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_UV,
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
vkMeshLoader::VERTEX_LAYOUT_TANGENT,
vkMeshLoader::VERTEX_LAYOUT_BITANGENT
};
class VulkanExample : public VulkanExampleBase
{
public:
struct {
struct {
vkTools::VulkanTexture smoke;
vkTools::VulkanTexture fire;
// We use a custom sampler to change some sampler
// attributes required for rotation the uv coordinates
// inside the shader for alpha blended textures
VkSampler sampler;
} particles;
struct {
vkTools::VulkanTexture colorMap;
vkTools::VulkanTexture normalMap;
} floor;
} textures;
struct {
vkMeshLoader::Mesh environment;
} meshes;
glm::vec3 emitterPos = glm::vec3(0.0f, -FLAME_RADIUS + 2.0f, 0.0f);
glm::vec3 minVel = glm::vec3(-3.0f, 0.5f, -3.0f);
glm::vec3 maxVel = glm::vec3(3.0f, 7.0f, 3.0f);
struct {
VkBuffer buffer;
VkDeviceMemory memory;
// Store the mapped address of the particle data for reuse
void *mappedMemory;
// Size of the particle buffer in bytes
size_t size;
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} particles;
struct {
vkTools::UniformData fire;
vkTools::UniformData environment;
} uniformData;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::vec2 viewportDim;
float pointSize = PARTICLE_SIZE;
} uboVS;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 normal;
glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
glm::vec4 cameraPos;
} uboEnv;
struct {
VkPipeline particles;
VkPipeline environment;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
std::vector<Particle> particleBuffer;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -90.0f;
rotation = { -30.0f, 45.0f, 0.0f };
title = "Vulkan Example - Particle system";
zoomSpeed *= 1.5f;
timerSpeed *= 8.0f;
srand(time(NULL));
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
textureLoader->destroyTexture(textures.particles.smoke);
textureLoader->destroyTexture(textures.particles.fire);
textureLoader->destroyTexture(textures.floor.colorMap);
textureLoader->destroyTexture(textures.floor.normalMap);
vkDestroyPipeline(device, pipelines.particles, nullptr);
vkDestroyPipeline(device, pipelines.environment, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkUnmapMemory(device, particles.memory);
vkDestroyBuffer(device, particles.buffer, nullptr);
vkFreeMemory(device, particles.memory, nullptr);
vkDestroyBuffer(device, uniformData.fire.buffer, nullptr);
vkFreeMemory(device, uniformData.fire.memory, nullptr);
vkMeshLoader::freeMeshBufferResources(device, &meshes.environment.buffers);
vkDestroySampler(device, textures.particles.sampler, nullptr);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Environment
meshes.environment.drawIndexed(drawCmdBuffers[i]);
// Particle system
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.particles);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &particles.buffer, offsets);
vkCmdDraw(drawCmdBuffers[i], PARTICLE_COUNT, 1, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
}
float rnd(float range)
{
return range * (rand() / double(RAND_MAX));
}
void initParticle(Particle *particle, glm::vec3 emitterPos)
{
particle->vel = glm::vec4(0.0f, minVel.y + rnd(maxVel.y - minVel.y), 0.0f, 0.0f);
particle->alpha = rnd(0.75f);
particle->size = 1.0f + rnd(0.5f);
particle->color = glm::vec4(1.0f);
particle->type = PARTICLE_TYPE_FLAME;
particle->rotation = rnd(2.0f * M_PI);
particle->rotationSpeed = rnd(2.0f) - rnd(2.0f);
// Get random sphere point
float theta = rnd(2 * M_PI);
float phi = rnd(M_PI) - M_PI / 2;
float r = rnd(FLAME_RADIUS);
particle->pos.x = r * cos(theta) * cos(phi);
particle->pos.y = r * sin(phi);
particle->pos.z = r * sin(theta) * cos(phi);
particle->pos += glm::vec4(emitterPos, 0.0f);
}
void transitionParticle(Particle *particle)
{
switch (particle->type)
{
case PARTICLE_TYPE_FLAME:
// Flame particles have a chance of turning into smoke
if (rnd(1.0f) < 0.05f)
{
particle->alpha = 0.0f;
particle->color = glm::vec4(0.25f + rnd(0.25f));
particle->pos.x *= 0.5f;
particle->pos.z *= 0.5f;
particle->vel = glm::vec4(rnd(1.0f) - rnd(1.0f), (minVel.y * 2) + rnd(maxVel.y - minVel.y), rnd(1.0f) - rnd(1.0f), 0.0f);
particle->size = 1.0f + rnd(0.5f);
particle->rotationSpeed = rnd(1.0f) - rnd(1.0f);
particle->type = PARTICLE_TYPE_SMOKE;
}
else
{
initParticle(particle, emitterPos);
}
break;
case PARTICLE_TYPE_SMOKE:
// Respawn at end of life
initParticle(particle, emitterPos);
break;
}
}
void prepareParticles()
{
particleBuffer.resize(PARTICLE_COUNT);
for (auto& particle : particleBuffer)
{
initParticle(&particle, emitterPos);
particle.alpha = 1.0f - (abs(particle.pos.y) / (FLAME_RADIUS * 2.0f));
}
particles.size = particleBuffer.size() * sizeof(Particle);
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
particles.size,
particleBuffer.data(),
&particles.buffer,
&particles.memory);
// Map the memory and store the pointer for reuse
VkResult err = vkMapMemory(device, particles.memory, 0, particles.size, 0, &particles.mappedMemory);
assert(!err);
}
void updateParticles()
{
float particleTimer = frameTimer * 0.45f;
for (auto& particle : particleBuffer)
{
switch (particle.type)
{
case PARTICLE_TYPE_FLAME:
particle.pos.y -= particle.vel.y * particleTimer * 3.5f;
particle.alpha += particleTimer * 2.5f;
particle.size -= particleTimer * 0.5f;
break;
case PARTICLE_TYPE_SMOKE:
particle.pos -= particle.vel * frameTimer * 1.0f;
particle.alpha += particleTimer * 1.25f;
particle.size += particleTimer * 0.125f;
particle.color -= particleTimer * 0.05f;
break;
}
particle.rotation += particleTimer * particle.rotationSpeed;
// Transition particle state
if (particle.alpha > 2.0f)
{
transitionParticle(&particle);
}
}
size_t size = particleBuffer.size() * sizeof(Particle);
memcpy(particles.mappedMemory, particleBuffer.data(), size);
}
void loadTextures()
{
// Particles
textureLoader->loadTexture(
"./../data/textures/particle_smoke.ktx",
VK_FORMAT_BC3_UNORM_BLOCK,
&textures.particles.smoke);
textureLoader->loadTexture(
"./../data/textures/particle_fire.ktx",
VK_FORMAT_BC3_UNORM_BLOCK,
&textures.particles.fire);
// Floor
textureLoader->loadTexture(
"./../data/textures/fireplace_colormap_bc3.ktx",
VK_FORMAT_BC3_UNORM_BLOCK,
&textures.floor.colorMap);
textureLoader->loadTexture(
"./../data/textures/fireplace_normalmap_bc3.ktx",
VK_FORMAT_BC3_UNORM_BLOCK,
&textures.floor.normalMap);
// Create a custom sampler to be used with the particle textures
// Create sampler
VkSamplerCreateInfo samplerCreateInfo = vkTools::initializers::samplerCreateInfo();
samplerCreateInfo.magFilter = VK_FILTER_LINEAR;
samplerCreateInfo.minFilter = VK_FILTER_LINEAR;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
// Different address mode
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerCreateInfo.addressModeV = samplerCreateInfo.addressModeU;
samplerCreateInfo.addressModeW = samplerCreateInfo.addressModeU;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
// Both particle textures have the same number of mip maps
samplerCreateInfo.maxLod = textures.particles.fire.mipLevels;
// Enable anisotropic filtering
samplerCreateInfo.maxAnisotropy = 8;
samplerCreateInfo.anisotropyEnable = VK_TRUE;
// Use a different border color (than the normal texture loader) for additive blending
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
VkResult err = vkCreateSampler(device, &samplerCreateInfo, nullptr, &textures.particles.sampler);
assert(!err);
}
void loadMeshes()
{
loadMesh("./../data/models/fireplace.obj", &meshes.environment.buffers, vertexLayout, 10.0f);
meshes.environment.setupVertexInputState(vertexLayout);
}
void setupVertexDescriptions()
{
// Binding description
particles.bindingDescriptions.resize(1);
particles.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Particle),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
// Location 0 : Position
particles.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32A32_SFLOAT,
0));
// Location 1 : Color
particles.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32A32_SFLOAT,
sizeof(float) * 4));
// Location 2 : Alpha
particles.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32_SFLOAT,
sizeof(float) * 8));
// Location 3 : Size
particles.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32_SFLOAT,
sizeof(float) * 9));
// Location 4 : Rotation
particles.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
4,
VK_FORMAT_R32_SFLOAT,
sizeof(float) * 10));
// Location 5 : Type
particles.attributeDescriptions.push_back(
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
5,
VK_FORMAT_R32_SINT,
sizeof(float) * 11));
particles.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
particles.inputState.vertexBindingDescriptionCount = particles.bindingDescriptions.size();
particles.inputState.pVertexBindingDescriptions = particles.bindingDescriptions.data();
particles.inputState.vertexAttributeDescriptionCount = particles.attributeDescriptions.size();
particles.inputState.pVertexAttributeDescriptions = particles.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// Binding 1 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSets()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
// Image descriptor for the color map texture
VkDescriptorImageInfo texDescriptorSmoke =
vkTools::initializers::descriptorImageInfo(
textures.particles.sampler,
textures.particles.smoke.view,
VK_IMAGE_LAYOUT_GENERAL);
VkDescriptorImageInfo texDescriptorFire =
vkTools::initializers::descriptorImageInfo(
textures.particles.sampler,
textures.particles.fire.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.fire.descriptor),
// Binding 1 : Smoke texture
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorSmoke),
// Binding 1 : Fire texture array
vkTools::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&texDescriptorFire)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Environment
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &meshes.environment.descriptorSet);
assert(!vkRes);
VkDescriptorImageInfo texDescriptorColorMap =
vkTools::initializers::descriptorImageInfo(
textures.floor.colorMap.sampler,
textures.floor.colorMap.view,
VK_IMAGE_LAYOUT_GENERAL);
VkDescriptorImageInfo texDescriptorNormalMap =
vkTools::initializers::descriptorImageInfo(
textures.floor.normalMap.sampler,
textures.floor.normalMap.view,
VK_IMAGE_LAYOUT_GENERAL);
writeDescriptorSets.clear();
// Binding 0 : Vertex shader uniform buffer
writeDescriptorSets.push_back(
vkTools::initializers::writeDescriptorSet(
meshes.environment.descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.environment.descriptor));
// Binding 1 : Color map
writeDescriptorSets.push_back(
vkTools::initializers::writeDescriptorSet(
meshes.environment.descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorColorMap));
// Binding 2 : Normal map
writeDescriptorSets.push_back(
vkTools::initializers::writeDescriptorSet(
meshes.environment.descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&texDescriptorNormalMap));
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader("./../data/shaders/particlefire/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/particlefire/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &particles.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
depthStencilState.depthWriteEnable = VK_FALSE;
// Premulitplied alpha
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.particles);
assert(!err);
// Environment rendering pipeline (normal mapped)
shaderStages[0] = loadShader("./../data/shaders/particlefire/normalmap.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader("./../data/shaders/particlefire/normalmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
pipelineCreateInfo.pVertexInputState = &meshes.environment.vertexInputState;
blendAttachmentState.blendEnable = VK_FALSE;
depthStencilState.depthWriteEnable = VK_TRUE;
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.environment);
assert(!err);
meshes.environment.pipeline = pipelines.environment;
meshes.environment.pipelineLayout = pipelineLayout;
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboVS),
&uboVS,
&uniformData.fire.buffer,
&uniformData.fire.memory,
&uniformData.fire.descriptor);
// Vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboEnv),
&uboEnv,
&uniformData.environment.buffer,
&uniformData.environment.memory,
&uniformData.environment.descriptor);
updateUniformBuffers();
}
void updateUniformBufferLight()
{
// Environment
uboEnv.lightPos.x = sin(timer * 2 * M_PI) * 1.5f;
uboEnv.lightPos.y = 0.0f;
uboEnv.lightPos.z = cos(timer * 2 * M_PI) * 1.5f;
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.environment.memory, 0, sizeof(uboEnv), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboEnv, sizeof(uboEnv));
vkUnmapMemory(device, uniformData.environment.memory);
}
void updateUniformBuffers()
{
// Vertex shader
glm::mat4 viewMatrix = glm::mat4();
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f);
viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom));
uboVS.model = glm::mat4();
uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0.0f, 15.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
uboVS.viewportDim = glm::vec2((float)width, (float)height);
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.fire.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformData.fire.memory);
// Environment
uboEnv.projection = uboVS.projection;
uboEnv.model = uboVS.model;
uboEnv.normal = glm::inverseTranspose(uboEnv.model);
uboEnv.cameraPos = glm::vec4(0.0, 0.0, zoom, 0.0);
err = vkMapMemory(device, uniformData.environment.memory, 0, sizeof(uboEnv), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboEnv, sizeof(uboEnv));
vkUnmapMemory(device, uniformData.environment.memory);
}
void prepare()
{
VulkanExampleBase::prepare();
loadTextures();
prepareParticles();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
loadMeshes();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
if (!paused)
{
updateUniformBufferLight();
updateParticles();
}
}
virtual void viewChanged()
{
updateUniformBuffers();
}
};
VulkanExample *vulkanExample;
#ifdef _WIN32
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#else
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
#ifdef _WIN32
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#else
int main(const int argc, const char *argv[])
#endif
{
vulkanExample = new VulkanExample();
#ifdef _WIN32
vulkanExample->setupWindow(hInstance, WndProc);
#else
vulkanExample->setupWindow();
#endif
vulkanExample->initSwapchain();
vulkanExample->prepare();
vulkanExample->renderLoop();
delete(vulkanExample);
return 0;
}