procedural-3d-engine/offscreen/offscreen.cpp

1195 lines
40 KiB
C++
Raw Normal View History

2016-02-16 15:07:25 +01:00
/*
* Vulkan Example - Offscreen rendering using a separate framebuffer
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
2016-02-16 15:07:25 +01:00
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Texture properties
#define TEX_DIM 512
#define TEX_FORMAT VK_FORMAT_R8G8B8A8_UNORM
#define TEX_FILTER VK_FILTER_LINEAR
// Offscreen frame buffer properties
#define FB_DIM TEX_DIM
#define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM
// Vertex layout for this example
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_UV,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
vkMeshLoader::VERTEX_LAYOUT_NORMAL
};
class VulkanExample : public VulkanExampleBase
{
public:
bool debugDisplay = false;
struct {
vkTools::VulkanTexture colorMap;
} textures;
struct {
vkMeshLoader::MeshBuffer example;
vkMeshLoader::MeshBuffer quad;
vkMeshLoader::MeshBuffer plane;
} meshes;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkTools::UniformData vsShared;
vkTools::UniformData vsMirror;
vkTools::UniformData vsOffScreen;
vkTools::UniformData vsDebugQuad;
} uniformData;
struct UBO {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 1.0f);
};
struct {
UBO vsShared;
} ubos;
struct {
VkPipeline debug;
VkPipeline shaded;
VkPipeline mirror;
} pipelines;
struct {
VkPipelineLayout quad;
VkPipelineLayout offscreen;
} pipelineLayouts;
struct {
VkDescriptorSet offscreen;
VkDescriptorSet mirror;
VkDescriptorSet model;
VkDescriptorSet debugQuad;
} descriptorSets;
VkDescriptorSetLayout descriptorSetLayout;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct FrameBuffer {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color, depth;
// Texture target for framebugger blut
vkTools::VulkanTexture textureTarget;
} offScreenFrameBuf;
VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE;
glm::vec3 meshPos = glm::vec3(0.0f, -1.5f, 0.0f);
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -6.5f;
rotation = { -11.25f, 45.0f, 0.0f };
timerSpeed *= 0.25f;
title = "Vulkan Example - Offscreen rendering";
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
// Textures
textureLoader->destroyTexture(offScreenFrameBuf.textureTarget);
textureLoader->destroyTexture(textures.colorMap);
// Frame buffer
// Color attachment
vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr);
// Depth attachment
vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr);
vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr);
vkDestroyPipeline(device, pipelines.debug, nullptr);
vkDestroyPipeline(device, pipelines.shaded, nullptr);
vkDestroyPipeline(device, pipelines.mirror, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.quad, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
// Meshes
vkMeshLoader::freeMeshBufferResources(device, &meshes.example);
vkMeshLoader::freeMeshBufferResources(device, &meshes.quad);
vkMeshLoader::freeMeshBufferResources(device, &meshes.plane);
// Uniform buffers
vkTools::destroyUniformData(device, &uniformData.vsShared);
vkTools::destroyUniformData(device, &uniformData.vsMirror);
vkTools::destroyUniformData(device, &uniformData.vsOffScreen);
vkTools::destroyUniformData(device, &uniformData.vsDebugQuad);
vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer);
}
// Preapre an empty texture as the blit target from
// the offscreen framebuffer
void prepareTextureTarget(uint32_t width, uint32_t height, VkFormat format)
{
createSetupCommandBuffer();
VkFormatProperties formatProperties;
VkResult err;
// Get device properites for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Check if blit destination is supported for the requested format
// Only try for optimal tiling, linear tiling usually won't support blit as destination anyway
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT);
// Prepare blit target texture
offScreenFrameBuf.textureTarget.width = width;
offScreenFrameBuf.textureTarget.height = height;
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
// Texture will be sampled in a shader and is also the blit destination
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
2016-02-16 15:07:25 +01:00
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &offScreenFrameBuf.textureTarget.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenFrameBuf.textureTarget.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &offScreenFrameBuf.textureTarget.deviceMemory);
assert(!err);
err = vkBindImageMemory(device, offScreenFrameBuf.textureTarget.image, offScreenFrameBuf.textureTarget.deviceMemory, 0);
assert(!err);
// Image memory barrier
// Set initial layout for the offscreen texture transfer destination
// Will be transformed while updating the texture
offScreenFrameBuf.textureTarget.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
2016-02-16 15:07:25 +01:00
vkTools::setImageLayout(
setupCmdBuffer,
offScreenFrameBuf.textureTarget.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
2016-02-16 15:07:25 +01:00
offScreenFrameBuf.textureTarget.imageLayout);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = TEX_FILTER;
sampler.minFilter = TEX_FILTER;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &offScreenFrameBuf.textureTarget.sampler);
assert(!err);
// Create image view
VkImageViewCreateInfo view = {};
view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.image = offScreenFrameBuf.textureTarget.image;
err = vkCreateImageView(device, &view, nullptr, &offScreenFrameBuf.textureTarget.view);
assert(!err);
flushSetupCommandBuffer();
}
// Prepare a new framebuffer for offscreen rendering
// The contents of this framebuffer are then
// blitted to our render target
void prepareOffscreenFramebuffer()
{
2016-02-16 15:07:25 +01:00
createSetupCommandBuffer();
offScreenFrameBuf.width = FB_DIM;
offScreenFrameBuf.height = FB_DIM;
VkFormat fbColorFormat = FB_COLOR_FORMAT;
// Find a suitable depth format
2016-02-16 15:07:25 +01:00
VkFormat fbDepthFormat;
VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat);
assert(validDepthFormat);
2016-02-16 15:07:25 +01:00
VkResult err;
// Color attachment
VkImageCreateInfo image = vkTools::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = fbColorFormat;
image.extent.width = offScreenFrameBuf.width;
image.extent.height = offScreenFrameBuf.height;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
// Image of the framebuffer is blit source
image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image.flags = 0;
VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
2016-02-16 15:07:25 +01:00
VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = fbColorFormat;
colorImageView.flags = 0;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.color.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem);
assert(!err);
err = vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0);
assert(!err);
2016-02-16 15:07:25 +01:00
vkTools::setImageLayout(
setupCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
2016-02-16 15:07:25 +01:00
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
colorImageView.image = offScreenFrameBuf.color.image;
err = vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view);
assert(!err);
// Depth stencil attachment
image.format = fbDepthFormat;
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = fbDepthFormat;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.depth.image);
assert(!err);
vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem);
assert(!err);
err = vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0);
assert(!err);
2016-02-16 15:07:25 +01:00
vkTools::setImageLayout(
setupCmdBuffer,
offScreenFrameBuf.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
2016-02-16 15:07:25 +01:00
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
depthStencilView.image = offScreenFrameBuf.depth.image;
err = vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view);
assert(!err);
flushSetupCommandBuffer();
2016-02-16 15:07:25 +01:00
VkImageView attachments[2];
attachments[0] = offScreenFrameBuf.color.view;
attachments[1] = offScreenFrameBuf.depth.view;
VkFramebufferCreateInfo fbufCreateInfo = vkTools::initializers::framebufferCreateInfo();
2016-02-16 15:07:25 +01:00
fbufCreateInfo.renderPass = renderPass;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.width = offScreenFrameBuf.width;
fbufCreateInfo.height = offScreenFrameBuf.height;
fbufCreateInfo.layers = 1;
err = vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer);
assert(!err);
}
void createOffscreenCommandBuffer()
{
VkCommandBufferAllocateInfo cmd = vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult vkRes = vkAllocateCommandBuffers(device, &cmd, &offScreenCmdBuffer);
assert(!vkRes);
}
// The command buffer to copy for rendering
// the offscreen scene and blitting it into
// the texture target is only build once
// and gets resubmitted
void buildOffscreenCommandBuffer()
{
VkResult err;
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer;
renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width;
renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
err = vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)offScreenFrameBuf.width,
(float)offScreenFrameBuf.height,
0.0f,
1.0f);
vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
offScreenFrameBuf.width,
offScreenFrameBuf.height,
0,
0);
vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Model
vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL);
vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shaded);
vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets);
vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(offScreenCmdBuffer, meshes.example.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(offScreenCmdBuffer);
// Make sure color writes to the framebuffer are finished before using it as transfer source
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
// Transform texture target to transfer source
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.textureTarget.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
2016-02-16 15:07:25 +01:00
// Blit offscreen color buffer to our texture target
VkImageBlit imgBlit;
imgBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imgBlit.srcSubresource.mipLevel = 0;
imgBlit.srcSubresource.baseArrayLayer = 0;
imgBlit.srcSubresource.layerCount = 1;
imgBlit.srcOffsets[0] = { 0, 0, 0 };
imgBlit.srcOffsets[1].x = offScreenFrameBuf.width;
imgBlit.srcOffsets[1].y = offScreenFrameBuf.height;
imgBlit.srcOffsets[1].z = 1;
imgBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imgBlit.dstSubresource.mipLevel = 0;
imgBlit.dstSubresource.baseArrayLayer = 0;
imgBlit.dstSubresource.layerCount = 1;
imgBlit.dstOffsets[0] = { 0, 0, 0 };
imgBlit.dstOffsets[1].x = offScreenFrameBuf.textureTarget.width;
imgBlit.dstOffsets[1].y = offScreenFrameBuf.textureTarget.height;
imgBlit.dstOffsets[1].z = 1;
// Blit from framebuffer image to texture image
// vkCmdBlitImage does scaling and (if necessary and possible) also does format conversions
vkCmdBlitImage(
offScreenCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
offScreenFrameBuf.textureTarget.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&imgBlit,
VK_FILTER_LINEAR
);
// Transform framebuffer color attachment back
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Transform texture target back to shader read
// Makes sure that writes to the textuer are finished before
// it's accessed in the shader
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.textureTarget.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
2016-02-16 15:07:25 +01:00
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
err = vkEndCommandBuffer(offScreenCmdBuffer);
assert(!err);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport(
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
if (debugDisplay)
{
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSets.debugQuad, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0);
}
// Scene
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug);
// Reflection plane
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSets.mirror, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.mirror);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.plane.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.plane.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.plane.indexCount, 1, 0, 0, 0);
// Model
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSets.model, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shaded);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.example.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
2016-02-16 15:07:25 +01:00
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
2016-02-16 15:07:25 +01:00
// Gather command buffers to be sumitted to the queue
std::vector<VkCommandBuffer> submitCmdBuffers = {
offScreenCmdBuffer,
drawCmdBuffers[currentBuffer],
};
submitInfo.commandBufferCount = submitCmdBuffers.size();
submitInfo.pCommandBuffers = submitCmdBuffers.data();
// Submit to queue
2016-02-16 15:07:25 +01:00
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
2016-02-16 15:07:25 +01:00
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
assert(!err);
2016-02-16 15:07:25 +01:00
err = vkQueueWaitIdle(queue);
assert(!err);
2016-02-16 15:07:25 +01:00
}
void loadMeshes()
{
loadMesh(getAssetPath() + "models/plane.obj", &meshes.plane, vertexLayout, 0.4f);
loadMesh(getAssetPath() + "models/chinesedragon.dae", &meshes.example, vertexLayout, 0.3f);
2016-02-16 15:07:25 +01:00
}
void loadTextures()
{
textureLoader->loadTexture(
getAssetPath() + "textures/darkmetal_bc3.ktx",
2016-02-16 15:07:25 +01:00
VK_FORMAT_BC3_UNORM_BLOCK,
&textures.colorMap);
}
void generateQuad()
{
// Setup vertices for a single uv-mapped quad
struct Vertex {
float pos[3];
float uv[2];
float col[3];
float normal[3];
};
#define QUAD_COLOR_NORMAL { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, 1.0f }
std::vector<Vertex> vertexBuffer =
{
{ { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f }, QUAD_COLOR_NORMAL },
{ { 0.0f, 1.0f, 0.0f },{ 0.0f, 1.0f }, QUAD_COLOR_NORMAL },
{ { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f }, QUAD_COLOR_NORMAL },
{ { 1.0f, 0.0f, 0.0f },{ 1.0f, 0.0f }, QUAD_COLOR_NORMAL }
};
#undef QUAD_COLOR_NORMAL
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
vertexBuffer.size() * sizeof(Vertex),
vertexBuffer.data(),
&meshes.quad.vertices.buf,
&meshes.quad.vertices.mem);
// Setup indices
std::vector<uint32_t> indexBuffer = { 0,1,2, 2,3,0 };
meshes.quad.indexCount = indexBuffer.size();
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
indexBuffer.size() * sizeof(uint32_t),
indexBuffer.data(),
&meshes.quad.indices.buf,
&meshes.quad.indices.mem);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
vkMeshLoader::vertexSize(vertexLayout),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
vertices.attributeDescriptions.resize(4);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Color
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 5);
// Location 3 : Normal
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 6),
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 8)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
5);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
// Textured quad pipeline layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// Binding 2 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
2)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.quad);
assert(!err);
// Offscreen pipeline layout
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen);
assert(!err);
}
void setupDescriptorSet()
{
// Mirror plane descriptor set
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.mirror);
assert(!vkRes);
// Image descriptor for the offscreen mirror texture
VkDescriptorImageInfo texDescriptorMirror =
vkTools::initializers::descriptorImageInfo(
offScreenFrameBuf.textureTarget.sampler,
offScreenFrameBuf.textureTarget.view,
VK_IMAGE_LAYOUT_GENERAL);
// Image descriptor for the color map
VkDescriptorImageInfo texDescriptorColorMap =
vkTools::initializers::descriptorImageInfo(
textures.colorMap.sampler,
textures.colorMap.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.mirror,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsMirror.descriptor),
// Binding 1 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSets.mirror,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorMirror),
// Binding 2 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSets.mirror,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
2,
&texDescriptorColorMap)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Model
// No texture
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.model);
assert(!vkRes);
std::vector<VkWriteDescriptorSet> modelWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.model,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsShared.descriptor)
};
vkUpdateDescriptorSets(device, modelWriteDescriptorSets.size(), modelWriteDescriptorSets.data(), 0, NULL);
// Offscreen
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen);
assert(!vkRes);
std::vector<VkWriteDescriptorSet> offScreenWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.offscreen,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsOffScreen.descriptor)
};
vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL);
// Debug quad
vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.debugQuad);
assert(!vkRes);
std::vector<VkWriteDescriptorSet> debugQuadWriteDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vkTools::initializers::writeDescriptorSet(
descriptorSets.debugQuad,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformData.vsDebugQuad.descriptor),
// Binding 1 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSets.debugQuad,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1,
&texDescriptorMirror)
};
vkUpdateDescriptorSets(device, debugQuadWriteDescriptorSets.size(), debugQuadWriteDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Solid rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/offscreen/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/offscreen/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
2016-02-16 15:07:25 +01:00
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayouts.quad,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.debug);
assert(!err);
// Mirror
shaderStages[0] = loadShader(getAssetPath() + "shaders/offscreen/mirror.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/offscreen/mirror.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
2016-02-16 15:07:25 +01:00
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.mirror);
assert(!err);
// Solid shading pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/offscreen/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/offscreen/offscreen.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
2016-02-16 15:07:25 +01:00
pipelineCreateInfo.layout = pipelineLayouts.offscreen;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.shaded);
assert(!err);
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Mesh vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(ubos.vsShared),
nullptr,
&uniformData.vsShared.buffer,
&uniformData.vsShared.memory,
&uniformData.vsShared.descriptor);
// Mirror plane vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(ubos.vsShared),
nullptr,
&uniformData.vsMirror.buffer,
&uniformData.vsMirror.memory,
&uniformData.vsMirror.descriptor);
// Offscreen vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(ubos.vsShared),
nullptr,
&uniformData.vsOffScreen.buffer,
&uniformData.vsOffScreen.memory,
&uniformData.vsOffScreen.descriptor);
// Debug quad vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(ubos.vsShared),
nullptr,
&uniformData.vsDebugQuad.buffer,
&uniformData.vsDebugQuad.memory,
&uniformData.vsDebugQuad.descriptor);
updateUniformBuffers();
updateUniformBufferOffscreen();
}
void updateUniformBuffers()
{
// Mesh
ubos.vsShared.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
2016-02-16 15:07:25 +01:00
glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
ubos.vsShared.model = viewMatrix * glm::translate(glm::mat4(), glm::vec3(0, 0, 0));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
2016-02-16 15:07:25 +01:00
ubos.vsShared.model = glm::translate(ubos.vsShared.model, meshPos);
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.vsShared.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData);
assert(!err);
memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared));
vkUnmapMemory(device, uniformData.vsShared.memory);
// Mirror
ubos.vsShared.model = viewMatrix * glm::translate(glm::mat4(), glm::vec3(0, 0, 0));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
2016-02-16 15:07:25 +01:00
err = vkMapMemory(device, uniformData.vsMirror.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData);
assert(!err);
memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared));
vkUnmapMemory(device, uniformData.vsMirror.memory);
// Debug quad
ubos.vsShared.projection = glm::ortho(0.0f, 4.0f, 0.0f, 4.0f*(float)height / (float)width, -1.0f, 1.0f);
ubos.vsShared.model = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, 0.0f));
err = vkMapMemory(device, uniformData.vsDebugQuad.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData);
assert(!err);
memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared));
vkUnmapMemory(device, uniformData.vsDebugQuad.memory);
}
void updateUniformBufferOffscreen()
{
ubos.vsShared.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
2016-02-16 15:07:25 +01:00
glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
ubos.vsShared.model = viewMatrix * glm::translate(glm::mat4(), glm::vec3(0, 0, 0));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
2016-02-16 15:07:25 +01:00
ubos.vsShared.model = glm::scale(ubos.vsShared.model, glm::vec3(1.0f, -1.0f, 1.0f));
ubos.vsShared.model = glm::translate(ubos.vsShared.model, meshPos);
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.vsOffScreen.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData);
assert(!err);
memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared));
vkUnmapMemory(device, uniformData.vsOffScreen.memory);
}
void prepare()
{
VulkanExampleBase::prepare();
loadTextures();
generateQuad();
loadMeshes();
setupVertexDescriptions();
prepareUniformBuffers();
prepareTextureTarget(TEX_DIM, TEX_DIM, TEX_FORMAT);
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
createOffscreenCommandBuffer();
prepareOffscreenFramebuffer();
buildCommandBuffers();
buildOffscreenCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
if (!paused)
{
updateUniformBuffers();
updateUniformBufferOffscreen();
}
}
virtual void viewChanged()
{
updateUniformBuffers();
updateUniformBufferOffscreen();
}
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
2016-02-16 15:07:25 +01:00
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
2016-02-16 15:07:25 +01:00
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
2016-02-16 15:07:25 +01:00
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
2016-02-16 15:07:25 +01:00
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
2016-02-16 15:07:25 +01:00
vulkanExample = new VulkanExample();
#if defined(_WIN32)
2016-02-16 15:07:25 +01:00
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
2016-02-16 15:07:25 +01:00
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
2016-02-16 15:07:25 +01:00
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
2016-02-16 15:07:25 +01:00
vulkanExample->renderLoop();
#if !defined(__ANDROID__)
2016-02-16 15:07:25 +01:00
delete(vulkanExample);
return 0;
#endif
}