procedural-3d-engine/examples/subpasses/subpasses.cpp

1073 lines
43 KiB
C++
Raw Normal View History

/*
* Vulkan Example - Using subpasses for G-Buffer compositing
*
* Copyright (C) 2016-2017 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*
* Summary:
* Implements a deferred rendering setup with a forward transparency pass using sub passes
*
* Sub passes allow reading from the previous framebuffer (in the same render pass) at
* the same pixel position.
*
* This is a feature that was especially designed for tile-based-renderers
* (mostly mobile GPUs) and is a new optomization feature in Vulkan for those GPU types.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#include <random>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define ENABLE_VALIDATION false
#define NUM_LIGHTS 64
class VulkanExample : public VulkanExampleBase
{
public:
struct {
vks::Texture2D glass;
} textures;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_COLOR,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
});
struct {
vks::Model scene;
vks::Model transparent;
} models;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
2016-10-15 12:38:50 +02:00
} uboGBuffer;
struct Light {
glm::vec4 position;
glm::vec3 color;
float radius;
};
struct {
glm::vec4 viewPos;
Light lights[NUM_LIGHTS];
2016-10-15 12:38:50 +02:00
} uboLights;
struct {
vks::Buffer GBuffer;
vks::Buffer lights;
2016-10-15 12:38:50 +02:00
} uniformBuffers;
struct {
VkPipeline offscreen;
2016-10-15 12:38:50 +02:00
VkPipeline composition;
VkPipeline transparent;
} pipelines;
struct {
VkPipelineLayout offscreen;
2016-10-15 12:38:50 +02:00
VkPipelineLayout composition;
VkPipelineLayout transparent;
} pipelineLayouts;
struct {
VkDescriptorSet scene;
2016-10-15 12:38:50 +02:00
VkDescriptorSet composition;
VkDescriptorSet transparent;
} descriptorSets;
struct {
2016-10-15 12:38:50 +02:00
VkDescriptorSetLayout scene;
VkDescriptorSetLayout composition;
VkDescriptorSetLayout transparent;
2016-10-15 12:38:50 +02:00
} descriptorSetLayouts;
2016-10-15 12:38:50 +02:00
// G-Buffer framebuffer attachments
struct FrameBufferAttachment {
VkImage image = VK_NULL_HANDLE;
VkDeviceMemory mem = VK_NULL_HANDLE;
VkImageView view = VK_NULL_HANDLE;
VkFormat format;
};
struct Attachments {
FrameBufferAttachment position, normal, albedo;
int32_t width;
int32_t height;
} attachments;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Subpasses";
camera.type = Camera::CameraType::firstperson;
camera.movementSpeed = 5.0f;
#ifndef __ANDROID__
camera.rotationSpeed = 0.25f;
2017-03-03 21:30:23 +01:00
#endif
camera.setPosition(glm::vec3(-3.2f, 1.0f, 5.9f));
camera.setRotation(glm::vec3(0.5f, 210.05f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
settings.overlay = true;
UIOverlay.subpass = 2;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
2016-10-15 12:38:50 +02:00
vkDestroyPipeline(device, pipelines.composition, nullptr);
vkDestroyPipeline(device, pipelines.transparent, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr);
2016-10-15 12:38:50 +02:00
vkDestroyPipelineLayout(device, pipelineLayouts.composition, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.transparent, nullptr);
2016-10-15 12:38:50 +02:00
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.scene, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.composition, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.transparent, nullptr);
clearAttachment(&attachments.position);
clearAttachment(&attachments.normal);
clearAttachment(&attachments.albedo);
textures.glass.destroy();
models.scene.destroy();
models.transparent.destroy();
2016-10-15 12:38:50 +02:00
uniformBuffers.GBuffer.destroy();
uniformBuffers.lights.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
// Enable texture compression
if (deviceFeatures.textureCompressionBC) {
enabledFeatures.textureCompressionBC = VK_TRUE;
}
else if (deviceFeatures.textureCompressionASTC_LDR) {
enabledFeatures.textureCompressionASTC_LDR = VK_TRUE;
}
else if (deviceFeatures.textureCompressionETC2) {
enabledFeatures.textureCompressionETC2 = VK_TRUE;
}
};
void clearAttachment(FrameBufferAttachment* attachment)
{
vkDestroyImageView(device, attachment->view, nullptr);
vkDestroyImage(device, attachment->image, nullptr);
vkFreeMemory(device, attachment->mem, nullptr);
}
// Create a frame buffer attachment
void createAttachment(VkFormat format, VkImageUsageFlags usage, FrameBufferAttachment *attachment)
{
if (attachment->image != VK_NULL_HANDLE) {
clearAttachment(attachment);
}
VkImageAspectFlags aspectMask = 0;
VkImageLayout imageLayout;
attachment->format = format;
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
assert(aspectMask > 0);
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = format;
image.extent.width = attachments.width;
image.extent.height = attachments.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
// VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT flag is required for input attachments
image.usage = usage | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
image.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image));
vkGetImageMemoryRequirements(device, attachment->image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->mem));
VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->mem, 0));
VkImageViewCreateInfo imageView = vks::initializers::imageViewCreateInfo();
imageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
imageView.format = format;
imageView.subresourceRange = {};
imageView.subresourceRange.aspectMask = aspectMask;
imageView.subresourceRange.baseMipLevel = 0;
imageView.subresourceRange.levelCount = 1;
imageView.subresourceRange.baseArrayLayer = 0;
imageView.subresourceRange.layerCount = 1;
imageView.image = attachment->image;
VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->view));
}
// Create color attachments for the G-Buffer components
void createGBufferAttachments()
{
createAttachment(VK_FORMAT_R16G16B16A16_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &attachments.position); // (World space) Positions
createAttachment(VK_FORMAT_R16G16B16A16_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &attachments.normal); // (World space) Normals
createAttachment(VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &attachments.albedo); // Albedo (color)
}
// Override framebuffer setup from base class, will automatically be called upon setup and if a window is resized
void setupFrameBuffer()
{
// If the window is resized, all the framebuffers/attachments used in our composition passes need to be recreated
if (attachments.width != width || attachments.height != height) {
attachments.width = width;
attachments.height = height;
createGBufferAttachments();
// Since the framebuffers/attachments are referred in the descriptor sets, these need to be updated too
// Composition pass
std::vector< VkDescriptorImageInfo> descriptorImageInfos = {
vks::initializers::descriptorImageInfo(VK_NULL_HANDLE, attachments.position.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL),
vks::initializers::descriptorImageInfo(VK_NULL_HANDLE, attachments.normal.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL),
vks::initializers::descriptorImageInfo(VK_NULL_HANDLE, attachments.albedo.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL),
};
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
for (size_t i = 0; i < descriptorImageInfos.size(); i++) {
writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, i, &descriptorImageInfos[i]));
}
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Forward pass
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, &descriptorImageInfos[0]),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
VkImageView attachments[5];
VkFramebufferCreateInfo frameBufferCreateInfo = {};
frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
frameBufferCreateInfo.renderPass = renderPass;
frameBufferCreateInfo.attachmentCount = 5;
frameBufferCreateInfo.pAttachments = attachments;
frameBufferCreateInfo.width = width;
frameBufferCreateInfo.height = height;
frameBufferCreateInfo.layers = 1;
// Create frame buffers for every swap chain image
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[0] = swapChain.buffers[i].view;
attachments[1] = this->attachments.position.view;
attachments[2] = this->attachments.normal.view;
attachments[3] = this->attachments.albedo.view;
attachments[4] = depthStencil.view;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]));
}
}
// Override render pass setup from base class
void setupRenderPass()
{
attachments.width = width;
attachments.height = height;
createGBufferAttachments();
std::array<VkAttachmentDescription, 5> attachments{};
// Color attachment
attachments[0].format = swapChain.colorFormat;
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
// Deferred attachments
// Position
attachments[1].format = this->attachments.position.format;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
// Normals
attachments[2].format = this->attachments.normal.format;
attachments[2].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[2].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[2].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[2].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[2].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[2].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[2].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
// Albedo
attachments[3].format = this->attachments.albedo.format;
attachments[3].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[3].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[3].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[3].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[3].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[3].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[3].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
// Depth attachment
attachments[4].format = depthFormat;
attachments[4].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[4].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[4].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[4].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[4].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[4].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[4].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
// Three subpasses
std::array<VkSubpassDescription,3> subpassDescriptions{};
// First subpass: Fill G-Buffer components
// ----------------------------------------------------------------------------------------
VkAttachmentReference colorReferences[4];
colorReferences[0] = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
colorReferences[1] = { 1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
colorReferences[2] = { 2, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
colorReferences[3] = { 3, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkAttachmentReference depthReference = { 4, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL };
subpassDescriptions[0].pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescriptions[0].colorAttachmentCount = 4;
subpassDescriptions[0].pColorAttachments = colorReferences;
subpassDescriptions[0].pDepthStencilAttachment = &depthReference;
// Second subpass: Final composition (using G-Buffer components)
// ----------------------------------------------------------------------------------------
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkAttachmentReference inputReferences[3];
inputReferences[0] = { 1, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL };
inputReferences[1] = { 2, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL };
inputReferences[2] = { 3, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL };
uint32_t preserveAttachmentIndex = 1;
subpassDescriptions[1].pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescriptions[1].colorAttachmentCount = 1;
subpassDescriptions[1].pColorAttachments = &colorReference;
subpassDescriptions[1].pDepthStencilAttachment = &depthReference;
// Use the color attachments filled in the first pass as input attachments
subpassDescriptions[1].inputAttachmentCount = 3;
subpassDescriptions[1].pInputAttachments = inputReferences;
// Third subpass: Forward transparency
// ----------------------------------------------------------------------------------------
colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
inputReferences[0] = { 1, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL };
subpassDescriptions[2].pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescriptions[2].colorAttachmentCount = 1;
subpassDescriptions[2].pColorAttachments = &colorReference;
subpassDescriptions[2].pDepthStencilAttachment = &depthReference;
// Use the color/depth attachments filled in the first pass as input attachments
subpassDescriptions[2].inputAttachmentCount = 1;
subpassDescriptions[2].pInputAttachments = inputReferences;
// Subpass dependencies for layout transitions
std::array<VkSubpassDependency, 4> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
// This dependency transitions the input attachment from color attachment to shader read
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = 1;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[2].srcSubpass = 1;
dependencies[2].dstSubpass = 2;
dependencies[2].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[2].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[2].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[2].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[2].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[3].srcSubpass = 0;
dependencies[3].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[3].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[3].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[3].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[3].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[3].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
renderPassInfo.pAttachments = attachments.data();
renderPassInfo.subpassCount = static_cast<uint32_t>(subpassDescriptions.size());
renderPassInfo.pSubpasses = subpassDescriptions.data();
renderPassInfo.dependencyCount = static_cast<uint32_t>(dependencies.size());
renderPassInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass));
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[5];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[2].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[3].color = { { 0.0f, 0.0f, 0.0f, 0.0f } };
clearValues[4].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 5;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// First sub pass
// Renders the components of the scene to the G-Buffer atttachments
{
vks::debugmarker::beginRegion(drawCmdBuffers[i], "Subpass 0: Deferred G-Buffer creation", glm::vec4(1.0f, 1.0f, 1.0f, 1.0f));
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.scene, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.scene.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.scene.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], models.scene.indexCount, 1, 0, 0, 0);
vks::debugmarker::endRegion(drawCmdBuffers[i]);
}
// Second sub pass
// This subpass will use the G-Buffer components that have been filled in the first subpass as input attachment for the final compositing
{
vks::debugmarker::beginRegion(drawCmdBuffers[i], "Subpass 1: Deferred composition", glm::vec4(1.0f, 1.0f, 1.0f, 1.0f));
vkCmdNextSubpass(drawCmdBuffers[i], VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.composition);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.composition, 0, 1, &descriptorSets.composition, 0, NULL);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
vks::debugmarker::endRegion(drawCmdBuffers[i]);
}
// Third subpass
// Render transparent geometry using a forward pass that compares against depth generted during G-Buffer fill
{
vks::debugmarker::beginRegion(drawCmdBuffers[i], "Subpass 2: Forward transparency", glm::vec4(1.0f, 1.0f, 1.0f, 1.0f));
vkCmdNextSubpass(drawCmdBuffers[i], VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.transparent);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.transparent, 0, 1, &descriptorSets.transparent, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.transparent.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.transparent.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], models.transparent.indexCount, 1, 0, 0, 0);
vks::debugmarker::endRegion(drawCmdBuffers[i]);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
models.scene.loadFromFile(getAssetPath() + "models/samplebuilding.dae", vertexLayout, 1.0f, vulkanDevice, queue);
models.transparent.loadFromFile(getAssetPath() + "models/samplebuilding_glass.dae", vertexLayout, 1.0f, vulkanDevice, queue);
// Textures
if (vulkanDevice->features.textureCompressionBC) {
textures.glass.loadFromFile(getAssetPath() + "textures/colored_glass_bc3_unorm.ktx", VK_FORMAT_BC3_UNORM_BLOCK, vulkanDevice, queue);
}
else if (vulkanDevice->features.textureCompressionASTC_LDR) {
textures.glass.loadFromFile(getAssetPath() + "textures/colored_glass_astc_8x8_unorm.ktx", VK_FORMAT_ASTC_8x8_UNORM_BLOCK, vulkanDevice, queue);
}
else if (vulkanDevice->features.textureCompressionETC2) {
textures.glass.loadFromFile(getAssetPath() + "textures/colored_glass_etc2_unorm.ktx", VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, vulkanDevice, queue);
}
else {
vks::tools::exitFatal("Device does not support any compressed texture format!", VK_ERROR_FEATURE_NOT_PRESENT);
}
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions = {
vks::initializers::vertexInputBindingDescription(
0,
vertexLayout.stride(),
VK_VERTEX_INPUT_RATE_VERTEX),
};
// Attribute descriptions
vertices.attributeDescriptions = {
// Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0),
// Location 1: Color
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3),
// Location 2: Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 6),
// Location 3: UV
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 9),
};
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 4),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
4);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
// Deferred shading layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
2016-10-15 12:38:50 +02:00
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.scene));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
2016-10-15 12:38:50 +02:00
&descriptorSetLayouts.scene,
1);
// Offscreen (scene) rendering pipeline layout
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen));
}
void setupDescriptorSet()
{
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
2016-10-15 12:38:50 +02:00
&descriptorSetLayouts.scene,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene));
writeDescriptorSets =
{
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSets.scene,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
2016-10-15 12:38:50 +02:00
&uniformBuffers.GBuffer.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
// Final fullscreen pass pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
pipelineLayouts.offscreen,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.subpass = 0;
std::array<VkPipelineColorBlendAttachmentState, 4> blendAttachmentStates = {
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE),
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE)
};
colorBlendState.attachmentCount = static_cast<uint32_t>(blendAttachmentStates.size());
colorBlendState.pAttachments = blendAttachmentStates.data();
// Offscreen scene rendering pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/subpasses/gbuffer.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/subpasses/gbuffer.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen));
}
2016-10-15 12:38:50 +02:00
// Create the Vulkan objects used in the composition pass (descriptor sets, pipelines, etc.)
void prepareCompositionPass()
{
// Descriptor set layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0: Position input attachment
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_SHADER_STAGE_FRAGMENT_BIT,
0),
// Binding 1: Normal input attachment
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
// Binding 2: Albedo input attachment
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
VK_SHADER_STAGE_FRAGMENT_BIT,
2),
// Binding 3: Light positions
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_FRAGMENT_BIT,
3),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
2016-10-15 12:38:50 +02:00
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.composition));
// Pipeline layout
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.composition, 1);
2016-10-15 12:38:50 +02:00
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.composition));
// Descriptor sets
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.composition, 1);
2016-10-15 12:38:50 +02:00
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.composition));
// Image descriptors for the offscreen color attachments
VkDescriptorImageInfo texDescriptorPosition = vks::initializers::descriptorImageInfo(VK_NULL_HANDLE, attachments.position.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VkDescriptorImageInfo texDescriptorNormal = vks::initializers::descriptorImageInfo(VK_NULL_HANDLE, attachments.normal.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VkDescriptorImageInfo texDescriptorAlbedo = vks::initializers::descriptorImageInfo(VK_NULL_HANDLE, attachments.albedo.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0: Position texture target
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 0, &texDescriptorPosition),
// Binding 1: Normals texture target
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, &texDescriptorNormal),
// Binding 2: Albedo texture target
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 2, &texDescriptorAlbedo),
// Binding 4: Fragment shader lights
vks::initializers::writeDescriptorSet(descriptorSets.composition, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3, &uniformBuffers.lights.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/subpasses/composition.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/subpasses/composition.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Use specialization constants to pass number of lights to the shader
VkSpecializationMapEntry specializationEntry{};
specializationEntry.constantID = 0;
specializationEntry.offset = 0;
specializationEntry.size = sizeof(uint32_t);
uint32_t specializationData = NUM_LIGHTS;
VkSpecializationInfo specializationInfo;
specializationInfo.mapEntryCount = 1;
specializationInfo.pMapEntries = &specializationEntry;
specializationInfo.dataSize = sizeof(specializationData);
specializationInfo.pData = &specializationData;
shaderStages[1].pSpecializationInfo = &specializationInfo;
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(pipelineLayouts.composition, renderPass, 0);
VkPipelineVertexInputStateCreateInfo emptyInputState{};
emptyInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
pipelineCreateInfo.pVertexInputState = &emptyInputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
// Index of the subpass that this pipeline will be used in
pipelineCreateInfo.subpass = 1;
depthStencilState.depthWriteEnable = VK_FALSE;
2016-10-15 12:38:50 +02:00
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.composition));
// Transparent (forward) pipeline
// Descriptor set layout
setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
};
descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.transparent));
// Pipeline layout
pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.transparent, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.transparent));
// Descriptor sets
allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.transparent, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.transparent));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.GBuffer.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, &texDescriptorPosition),
vks::initializers::writeDescriptorSet(descriptorSets.transparent, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.glass.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Enable blending
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.layout = pipelineLayouts.transparent;
pipelineCreateInfo.subpass = 2;
shaderStages[0] = loadShader(getAssetPath() + "shaders/subpasses/transparent.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/subpasses/transparent.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.transparent));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Deferred vertex shader
2016-10-15 12:38:50 +02:00
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
2016-10-15 12:38:50 +02:00
&uniformBuffers.GBuffer,
sizeof(uboGBuffer));
// Deferred fragment shader
2016-10-15 12:38:50 +02:00
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
2016-10-15 12:38:50 +02:00
&uniformBuffers.lights,
sizeof(uboLights));
// Update
updateUniformBufferDeferredMatrices();
updateUniformBufferDeferredLights();
}
void updateUniformBufferDeferredMatrices()
{
2016-10-15 12:38:50 +02:00
uboGBuffer.projection = camera.matrices.perspective;
uboGBuffer.view = camera.matrices.view;
2017-09-24 18:17:07 +02:00
uboGBuffer.model = glm::mat4(1.0f);
2016-10-15 12:38:50 +02:00
VK_CHECK_RESULT(uniformBuffers.GBuffer.map());
memcpy(uniformBuffers.GBuffer.mapped, &uboGBuffer, sizeof(uboGBuffer));
uniformBuffers.GBuffer.unmap();
}
void initLights()
{
std::vector<glm::vec3> colors =
{
glm::vec3(1.0f, 1.0f, 1.0f),
glm::vec3(1.0f, 0.0f, 0.0f),
glm::vec3(0.0f, 1.0f, 0.0f),
glm::vec3(0.0f, 0.0f, 1.0f),
glm::vec3(1.0f, 1.0f, 0.0f),
};
std::default_random_engine rndGen(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> rndDist(-1.0f, 1.0f);
2016-10-15 12:38:50 +02:00
std::uniform_int_distribution<uint32_t> rndCol(0, static_cast<uint32_t>(colors.size()-1));
2016-10-15 12:38:50 +02:00
for (auto& light : uboLights.lights)
{
light.position = glm::vec4(rndDist(rndGen) * 6.0f, 0.25f + std::abs(rndDist(rndGen)) * 4.0f, rndDist(rndGen) * 6.0f, 1.0f);
light.color = colors[rndCol(rndGen)];
light.radius = 1.0f + std::abs(rndDist(rndGen));
}
}
// Update fragment shader light position uniform block
void updateUniformBufferDeferredLights()
{
// Current view position
2016-10-15 12:38:50 +02:00
uboLights.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f, 1.0f, -1.0f, 1.0f);
2016-10-15 12:38:50 +02:00
VK_CHECK_RESULT(uniformBuffers.lights.map());
memcpy(uniformBuffers.lights.mapped, &uboLights, sizeof(uboLights));
uniformBuffers.lights.unmap();
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
setupVertexDescriptions();
initLights();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
prepareCompositionPass();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBufferDeferredMatrices();
updateUniformBufferDeferredLights();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Subpasses")) {
overlay->text("0: Deferred G-Buffer creation");
overlay->text("1: Deferred composition");
overlay->text("2: Forward transparency");
}
if (overlay->header("Settings")) {
if (overlay->button("Randomize lights")) {
initLights();
updateUniformBufferDeferredLights();
}
}
}
};
VULKAN_EXAMPLE_MAIN()